Journal Articles

  1. M. Mansuripur, J.W. Goodman, E.G. Rawson, R.J. Norton, “Fiber optics receiver error rate prediction using the Gram-Charlier series,” IEEE Trans. Comm. 28, 402 (1980).
  2. M. Mansuripur, “Magnetization reversal in thin magnetic films with perpendicular anisotropy,” J. Appl. Phys. 53, 1660, (1982).
  3. M. Mansuripur, G.A.N. Connell, and J.W. Goodman, “Laser-induced local heating of multilayers,” Appl. Opt. 21, 1106, (1982).
  4. M. Mansuripur, G.A.N. Connell, and J.W. Goodman, “Signal and noise in magneto-optical readout,” J. Appl. Phys. 53, 4485 (1982).
  5. M. Mansuripur and G.A.N. Connell, “Laser induced local heating of moving multilayer media,” Appl. Opt. 22, 666, (1983).
  6. M. Mansuripur, “Orientational effect of the extensional flow field on solutions of rigid rodlike macromolecules-disappearance of the isotropic to nematic phase transition,” Int. J. Multiphase Flow 9, 229 (1983).
  7. M. Mansuripur and G.A.N. Connell, “Thermal aspects of magneto-optical recording,” J. Appl. Phys. 54, 4794, (1983).
  8. G. A. N. Connell, D. Treves, R. Allen, and M. Mansuripur, “Signal-to­ noise ratio for magneto-optic readout from quadrilayer structures,” Appl. Phys. Lett. 42, 742 (1983).
  9. M. Mansuripur and G.A.N. Connell, “Energetics of domain formation in thermomagnetic recording,” J. Appl. Phys. 55, 3049 (1984).
  10. M. Mansuripur, “High-density magneto-optical disk storage and the effect of finite beam-size in readout,” J. Appl. Phys. 56, 1165 (1984).
  11. M. Mansuripur, M.F. Ruane, “Mean-field analysis of amorphous rare earth-transition metal alloys for thermomagnetic recording,” IEEE Trans. Mag. 22, 33 (1986).
  12. M. Ruane, M. Mansuripur, and R. Rosenvold, “Measurement of reflectivities for magneto-optical media,” Appl. Opt. 25, 1946 (1986).
  13. P. Wolniansky, S. Chase, R. Rosenvold, M. Ruane, and M. Mansuripur, “Magneto-optical measurements of hysteresis loop and anisotropy energy constants on amorphous TbxFel-x alloys,” J. Appl. Phys. 60, 346 (1986).
  14. M. Mansuripur, “Distribution of light at and near the focus of high numerical aperture objectives,” J. Opt. Soc. Am. 3, 2086 (1986).
  15. M. Mansuripur, “Figure of merit for magneto-optical media based on the dielectric tensor,” Appl. Phys. Lett. 49, 19 (1986).
  16. M. Mansuripur, “Magnetization reversal, coercivity and the process of thermomagnetic recording in thin films of amorphous rare earth-transition metal alloys,” J. Appl. Phys. 61, 1580 (1987).
  17. M. Mansuripur, “Analysis of astigmatic focusing and push-pull tracking error signals in magneto-optic disk systems,” Appl. Opt. 26, 3981 (1987).
  18. M. Mansuripur, “Magnetization reversal dynamics in the media of magneto-optical recording,” J. Appl. Phys. 63, 5809 (1988).
  19. M. Mansuripur, R. Giles, “Demagnetizing field computation for dynamic simulation of the magnetization reversal process,” IEEE Trans. Magnet. 24, 2326 (1988).
  20. M. Mansuripur, “Demagnetizing field computation for thin films: Extension to the hexagonal lattice,” J. Appl. Phys. 66, 3731 (1989).
  21. M. Mansuripur, “On the self magnetostatic energy of jagged domain walls,” J. Appl. Phys. 66, 3727 (1989).
  22. M. Mansuripur, “Computation of fields and forces in magnetic force microscopy,” IEEE Trans Magnet. 25, 3467 (1989).
  23. M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 6, 786 (1989). See also the corresponding erratum in J. Opt. Soc. Am. A 10, 382-383 (1993).
  24. M. Mansuripur, “Detecting transition regions in magneto-optical disk systems,” Appl. Phys. Lett. 55, 716 (1989).
  25. M. Mansuripur, “Domain wall energy in the media of magneto-optical recording,” J. Appl. Phys. 66, 6175 (1989).
  26. M. Mansuripur, F. Zhou, and J.K. Erwin, “Measuring the wavelength dependence of magneto-optical Kerr (or Faraday) rotation and ellipticity¯: a technique,” Appl. Opt.29, 1308 (1990).
  27. M. Mansuripur, “Analysis of multilayer thin film structures containing magneto-optic and anisotropic media at oblique incidence using 2 ´ 2 matrices,” J. Appl. Phys.67, 6466-6475 (1990).
  28. M. Mansuripur and R. Giles, “Simulation of the magnetization reversal dynamics on the Connection Machine,” Computers in Physics 4, 291-302, (1990).
  29. R.A. Hajjar, F.L. Zhou and M. Mansuripur, “Magneto-optical measurement of anisotropy energy constants on amorphous rare earth-transition metal alloys”, J. Appl. Phys. 67, 5328-5330 (1990).
  30. R. Giles, M. Mansuripur, “Possible sources of coercivity in thin films of amorphous rare earth-transition metal alloys”, Computers in Physics 5, 204-219 (1991).
  31. M. Mansuripur, “Computation of electron diffraction patterns in Lorentz electron microscopy of thin magnetic films”, J. Appl. Phys. 69, 2455-2464 (1991).
  32. R. Hajjar, M. Mansuripur, and H.P.D. Shieh, “Measurements of magnetoresistance in magneto-optical recording media,” J. Appl. Phys. 69, 7067-7080 (1991).
  33. M. Mansuripur, R. Giles and G. Patterson, “Coercivity of domain wall motion in thin films of amorphous rare earth-transition metal alloys,” (invited), J. Magnet. Soc. Japan 15, 17-30 (1991).
  34. Hong Fu, M. Mansuripur and P. Meystre, “Generic source of perpendicular anisotropy in amorphous rare-earth–transition-metal films” Phys. Rev. Lett. 66, 1086-1089 (1991).
  35. M. Mansuripur, “Effects of high-numerical-aperture focusing on the state of polarization in optical and magneto-optical data storage systems,” Applied Optics 30, 3154-3162 (1991).
  36. B.E. Bernacki, M. Mansuripur, “Characterization of magneto-optical recording media in terms of domain boundary jaggedness,” J. Appl. Phys. 69, 4960-4962 (1991).
  37. M. Mansuripur, “Enumerative modulation coding with arbitrary constraints and post-modulation error correction coding for data storage systems,” Proceedings of SPIE1499, 72-86 (1991).
  38. R. Giles, P. Alexopoulos and M. Mansuripur, “Micromagnetics of thin film media for magnetic recording”, Computers in Physics 6, 53-70 (1992).
  39. R. Giles and M. Mansuripur, “Dynamics of magnetization reversal in amorphous films of RE-TM alloys” (invited), Proceedings of the 1st magneto­ optical recording international symposium (MORIS), J. Mag. Soc. Japan 15-S1, 299-305 (1991).
  40. R.A. Hajjar, Te-ho Wu and M. Mansuripur, “Measurement of anisotropy energy for magneto-optical media,” J. Appl. Phys. 71, 813-820 (1992).
  41. R.A. Hajjar and M. Mansuripur, “Magnetoresistance peaks in the neighborhood of coercivity in magneto-optical recording media,” J. Appl. Phys. 72, 1528-1538 (1992).
  42. A.F. Zhou, J.K. Erwin, C.F. Brucker and M. Mansuripur, “Dielectric tensor character-ization for magneto-optical recording media,” Applied Optics, 31, 6280-6286 (1992).
  43. Hong Fu and M. Mansuripur, “Boltzmann distribution of bond orientations and perpendicular anisotropy in amorphous rare-earth–transition-metal films” Physical Review B 45, 7188-7195 (1992).
  44. Hong Fu, R. Giles, M. Mansuripur and G. Patterson, “Investigation of the effects of nanostructure on the observable behavior of magnetic thin film using large-scale computer simulation”, Computers in Physics 6, 610-629 (1992).
  45. Hong Fu, R. Giles and M. Mansuripur, “Coercivity mechanisms in magneto-optical recording media”, Computers in Physics 8, 80-91 (1994).
  46. Te-ho Wu, Hong Fu, R.A. Hajjar, T. Suzuki and M. Mansuripur, “Measurement of magnetic anisotropy constant for magneto-optical recording media: a comparison of several techniques”, J. Appl. Phys. 73, 1368-1376 (1993).
  47. B.E. Bernacki, K. Bates, M. Mansuripur, D. Hansen, D. Cisneros, “Characterization of a novel focusing/tracking technique with increased feedthrough immunity for optical-disk applications: the double-astigmatic method”, Applied Optics 32, 5789-5796 (1993).
  48. B.E. Bernacki and M. Mansuripur, “Investigation of substrate birefringence effects on optical-disk performance”, Applied Optics 32, 6547-6555 (1993).
  49. B.E. Bernacki and M. Mansuripur, “Causes of focus-error feedthrough in optical-disk systems: stigmatic and obscuration methods”, Applied Optics, 33, 735-743 (1994).
  50. Hong Fu, Teho Wu and M. Mansuripur, “Direct measurement of subnetwork exchange coupling constant for ferrimagnets” Jpn. J. Appl. Phys. 33, 12 (1994).
  51. Hong Fu, S. Sugaya, J.K. Erwin and M. Mansuripur, “Measurement of birefringence for optical recording disk substrates,” Applied Optics 33, 1938-1949 (1994).
  52. Hong Fu, S. Sugaya and M. Mansuripur, “Measuring distribution of the ellipsoid of birefringence through the thickness of optical disk substrates,” Applied Optics 33, 5994-5998 (1994).
  53. Hong Fu, T. Goodman, S. Sugaya, J.K. Erwin and M. Mansuripur, “Retroreflecting ellipsometer for measuring the birefringence of optical disk substrates,” Applied Optics34, 31-39 (1995).
  54. Hong Fu, Z. Yan and M. Mansuripur, “Measurement of the wavelength dependence of birefringence for optical disk substrates,” Applied Optics 33, 7406-7411 (1994).
  55. S. Sugaya and M. Mansuripur, “Effect of substrate birefringence on focusing and tracking servo signals in magneto-optical disk data storage,” Applied Optics 33, 5073-5079 (1994).
  56. S. Sugaya and M. Mansuripur, “Effect of tilted ellipsoid of birefringence on readout signal in magneto-optical disk data storage,” Applied Optics 33, 5999-6008 (1994).
  57. M. Mansuripur and Y-C. Hsieh, “A novel method for measuring the vertical birefringence of optical disk substrates,” Optics and Photonics News, Laboratory Notes section, S12-S15, May 1994.
  58. R. Ploessl, J.N. Chapman, M.R. Scheinfein, J.L. Blue, M. Mansuripur, H. Hoffmann,“Micromagnetic structure of domains in Co/Pt multilayers; I. Investigations of wall structure,” J. Appl. Phys. 74, 7431-7437 (1993).
  59. J.J. Zambuto, R.E. Gerber, J.K. Erwin, M. Mansuripur, “Ring lens focusing and push-pull tracking scheme for optical disk systems,” Applied Optics 33, 7987-7994 (1994).
  60. S. Gadetsky, I. Syrgabaev, J.K. Erwin, M. Mansuripur, T. Suzuki, and M. Ruane, “Measurements of the magneto-optic Kerr effect and the extraordinary Hall effect on grooved glass substrates coated with amorphous TbFeCo,” J. Opt. Soc. Am. A. 13, 314-319 (1996).
  61. S. Gadetsky, T. Suzuki, J.K. Erwin, and M. Mansuripur, “Effect of grooves on magnetization reversal in amorphous TbFeCo thin films,” IEEE Trans. Magnet. 30, 4404-4406 (1994).
  62. R.E. Gerber and M. Mansuripur, “Effects of substrate birefringence and tilt on the irradiance and phase patterns of the return beam in magneto­optical disk data storage,” Applied Optics 34, 4780-4787 (1995).
  63. R.E. Gerber, Lifeng Li, and M. Mansuripur, “Effect of surface plasmon excitations on the irradiance pattern of the return beam in optical disk data storage,” Applied Optics34, 4929-4936 (1995).
  64. L. Cheng, M. Mansuripur, and D.G. Howe, “Partial response equalization in magneto-optical disk readout: a theoretical investigation,” Applied Optics 34, 5153-5166 (1995).
  65. Y-C. Hsieh and M. Mansuripur, “Coercivity of magnetic domain wall motion near the edge of a terrace,” J. Appl. Phys. 78, 380-386 (1995).
  66. Hong Fu, Z. Yan, S-K. Lee, M. Mansuripur, “Dielectric Tensor characterization and evaluation of several magneto-optical recording media,” J. Appl. Phys. 78, 4076-4090 (1995).
  67. T.D. Goodman and M. Mansuripur, “Optimization of groove depth for cross-talk cancellation in the scheme of land-groove recording in magneto­optic disk systems,”Applied Optics, 35, pp 1107-1119 (1996).
  68. R.E. Gerber and M. Mansuripur, “Tilt correction in an optical disk system,” Applied Optics 35, 7000-7007 (1996).
  69. R.E. Gerber and M. Mansuripur, “Dependence of the tracking performance of an optical disk on the direction of the incident-light polarization,” Applied Optics 34, 8192-8200 (1996).
  70. M. Takahashi, S. Gadetsky and M. Mansuripur, “Study of domain formation mechanism in magneto-optical materials using micro Hall effect measurements,” J. Magn. Soc. Jpn. 19, Supplement S1, 395-398 (1995).
  71. S. Gadetsky, T. Suzuki, J.K. Erwin and M. Mansuripur, “Domain wall pinning in amorphous TbFeCo films on patterned substrates,” J. Magn. Soc. Jpn. 19, Supplement S1, 91-96 (1995).
  72. S. Gadetsky, T. Suzuki, J.K. Erwin and M. Mansuripur, “Thermomagnetic recording in amorphous TbFeCo films on patterned substrates,” IEEE Trans. Magnet. 31, 3253-3255 (1995).
  73. S. Gadetsky and M. Mansuripur, “Barkhausen jumps during domain wall motion in thin magneto-optical films,” J. Appl. Phys. 79, 5667-5669 (1996).
  74. S. Gadetsky, T. Suzuki, J.K. Erwin, and M. Mansuripur, “Magneto-optical recording on patterned substrates,” J. Appl. Phys. 79, 5687-5692 (1996).
  75. Y-C. Hsieh, M. Takahashi, S.N. Gadetsky, and M. Mansuripur, “A dynamic study of domain formation mechanism during thermomagnetic recording based on micro-Hall effect measurements,” J. Appl. Phys. 79, 5700-5702 (1996).
  76. T. D. Goodman, R.E. Gerber, and M. Mansuripur, “Temperature dependence of the birefringence of optical-disk substrates,” Applied Optics 35, 3031-3038 (1996).
  77. Y-C. Hsieh, S.N. Gadetsky, T. Suzuki, and M. Mansuripur, “Oblique sputtering of amorphous TbFeCo thin films on glass substrates and the effect of deposition angle on perpendicular magnetic anisotropy,” J. Appl. Phys. 81, 3555-3560 (1997).
  78. Y-C. Hsieh and M. Mansuripur, “Measurement of the thermal coefficients of nonreversible phase-change optical recording films,” Applied Optics 36, 866-872 (1997).
  79. R.E. Gerber, M. Mansuripur, and J.M. Sasian, “A versatile objective lens for testing of optical disks with adjustable correction for different wavelengths and substrate thicknesses,” Applied Optics 36, 2414-2420 (1997).
  80. L. Cheng, C.L. Bartlett, J.K. Erwin, and M. Mansuripur, “A leaky polarizing beam-splitter with adjustable leak ratio for operation in the wavelength range of 440-690nm,”Applied Optics 36, 4393-4399 (1997).
  81. T.D. Goodman and M. Mansuripur, “Subtle effects of the substrate in optical disk data storage systems,” Applied Optics 35, 6747-6753 (1996).
  82. J. M. Sasian and M. Mansuripur, “Design approaches with a lenslet array and a single, high-numerical aperture, annular-field objective lens for optical data storage systems that incorporate large numbers of parallel read-write-erase channels,”Applied Optics 38, 1163-1168 (1999).
  83. M. Mansuripur, C. Peng, J. K. Erwin, W. Bletscher, S. G. Kim, S. K. Lee, R. E. Gerber, C. Bartlett, T. D. Goodman, L. Cheng, C. S. Chung, T. Kim, and K. Bates, “Versatile polychromatic dynamic testbed for optical disks,” Applied Optics 36, 9296-9303 (1997).
  84. Y-C. Hsieh and M. Mansuripur, “Image contrast in polarization microscopy of magneto-optical disk data storage media through birefringent plastic substrates,”Applied Optics 36, 4839-4852 (1997).
  85. C. Peng and M. Mansuripur, “Sources of noise in erasable optical disk data storage,”Applied Optics 37, 921-928 (1998).
  86. C. Bartlett, D. Kay, and M. Mansuripur, “Computer simulations of the effects of disk tilt and lens tilt on the push-pull tracking error signal in an optical disk drive,” Applied Optics 36, 8467-8473 (1997).
  87. J. H. Yoo, C. W. Lee, D. H. Shin, C. Bartlett, K. I. Cheong, J. K. Erwin and M. Mansuripur,“Investigation of certain diffraction effects in an optical disk,” Applied Optics 36, 9287-9295 (1997).
  88. C. Peng, M. Mansuripur, W. M. Kim and S. G. Kim, “Edge detection in phase-change optical data storage,” Appl. Phys. Lett. 71, 2088-2090 (1997).
  89. C. Peng, L. Cheng, and M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82, 4183-4191 (1997).
  90. Wei-Hung Yeh, M. Mansuripur, M. Fallahi and R. S. Penner, “Talbot imaging with increased spatial frequency: a technique for replicating truncated self-imaging objects,” Optics Communications 170, 207-212 (1999).
  91. C. Peng and M. Mansuripur, “Noise and coupling in magnetic super-resolution media for magneto-optical readout,” J. Appl. Phys. 85, 6323-6330 (1999).
  92. C. Peng, W. H. Yeh, and M. Mansuripur, “Measurements and simulations of differential phase-tracking signals in optical disk data storage,” Applied Optics 37, 4425-4432 (1998).
  93. C. Peng, M. Mansuripur, and K. Nagata, “Edge detection readout signal and cross-talk in phase-change optical data storage,” Applied Physics Letters 72, 3422-3424 (1998).
  94. Wei-hung Yeh, Lifeng Li, and M. Mansuripur, “Vector diffraction and polarization effects in an optical disk system,” Applied Optics 37, 6983-6988 (1998).
  95. A. Kikitsu, C. M. Falco, and M. Mansuripur, “Kerr effect enhancement by photon tunneling and possible application to a new scanning probe magnetic microscope,” J. Appl. Phys. 83, 6232-6234 (1998).
  96. Wei-hung Yeh, Warren Bletscher, and M. Mansuripur, “High resolution optical shaft encoder for motor speed control based on an optical disk pick-up,” Review of Scientific Instruments 69, 3068-3071 (1998).
  97. C. Peng and M. Mansuripur, “Evaluation of partial-response, maximum-likelihood detection for phase-change optical data storage,” Applied Optics 38, 4394-4405 (1999).
  98. Wei-hung Yeh, J. Carriere, and M. Mansuripur, “Polarization microscopy of magnetic domains for magneto-optical disks,” Applied Optics 38, 3749-3758 (1999).
  99. Wei-hung Yeh and M. Mansuripur, “Evanescent coupling in magneto-optical and phase-change disk systems based on the solid immersion lens,” Applied Optics 39, 302-315 (2000).
  100. E. M. Wright, M. Mansuripur, V. Liberman, and K. Bates, “Spatial pattern of microchannel formation in fused silica irradiated by nanosecond ultraviolet pulses,”Applied Optics 38, 5785-5788 (1999).
  101. M. Mansuripur, J. K. Erwin, W. Bletscher, P. Khulbe, K. Sadeghi, X. Xun, A. Gupta, and S. Mendes, “Static tester for characterization of phase-change, dye-polymer, and magneto-optical media of optical data storage,” Applied Optics 38, 7095-7104 (1999).
  102. P. Khulbe, X. Xun, and M. Mansuripur, “Crystallization and amorphization studies of a Ge2Sb2.3Te5 thin-film sample under pulsed laser irradiation,” Applied Optics 39, 2359-2366 (2000).
  103. C. Peng and M. Mansuripur, “Measurement of the thermal conductivity of erasable phase-change optical recording media,” Applied Optics 39, 2347-2352 (2000).
  104. P. Khulbe, E. M. Wright, and M. Mansuripur, “Crystallization behavior of as-deposited, melt-quenched, and primed amorphous states of Ge2Sb2.3Te5 films,” J. Appl. Phys.88, 3926-3933 (2000).
  105. Wei-Hung Yeh, Lifeng Li, and M. Mansuripur, “Computation of effective groove depth in an optical disk with vector diffraction theory,” Applied Optics 39, 316-323 (2000).
  106. R. Liang, J. K. Erwin, and M. Mansuripur, “Measurement of the relative optical phase between amorphous and crystalline regions of the phase-change media of optical recording,” Applied Optics 39, 2167-2173 (2000).
  107. R. Liang, J. K. Erwin, and M. Mansuripur, “Variation on Zernike’s phase-contrast microscope,” Applied Optics 39, 2152-2158 (2000).
  108. X. Xun, C. Peng, and M. Mansuripur, “Estimation of thermal conductivity of magneto-optic media,” Applied Optics 39, 4355-4360 (2000).
  109. J. Tesar, R. Liang, and M. Mansuripur, “Optical modeling combining geometrical ray tracing and physical-optics software,” Opt. Eng. 39, 1845-1849 (2000).
  110. C. Peng and M. Mansuripur, “Thermal cross-track cross talk in phase-change optical disk data storage,” J. Appl. Phys. 88, 1214-1220 (2000).
  111. M. Mansuripur, R. Liang, and J. Tsujiuchi, “Simulation software for optical systems: DIFFRACT™ and its applications,” (in Japanese), Optical Technology Contact 38, 147-156 (2000).
  112. E. M. Wright, P. K. Khulbe, and M. Mansuripur, “Dynamic theory of crystallization in Ge2Sb2.3Te5 phase-change optical recording media,” Applied Optics 39, 6695-6701 (2000).
  113. R. Liang, L. Li, K. Saito, and M. Mansuripur, “Polarization dependence of readout signals from periodic one-dimensional arrays of magnetic domains in magneto-optical media and crystalline-amorphous line pairs in phase-change media of optical recording,” Applied Optics 40, 2323-2330 (2001).
  114. C. Peng, R. Liang, J. K. Erwin, W. Bletscher, K. Nagata, and M. Mansuripur,“Determination of optical constants of thin films and multilayer stacks by use of concurrent reflectance, transmittance, and ellipsometric measurements,” Applied Optics 40, 5088-5099 (2001).
  115. C. Peng, M. Mansuripur, M. Ikenishi, and M. Miura, “Substrate noise in optical data-storage systems,” Applied  Optics 40, 3379-3386 (2001).
  116. X. Xun, C. Peng, K. Saito, and M. Mansuripur, “Scattering measurements on optical disks and their relation to media noise,” Applied Optics 40, 4728-4737 (2001).
  117. M. Mansuripur, “Dependence of Capacity on Media Noise in Data Storage Systems,” Japn. J. Appl. Phys. 41, 1638-1642 (2002).
  118. G. M. Fischer, B. Medower, R. Revay and M. Mansuripur, “Thermal Properties and Crystallization Dynamics of a Phase-change Alloy for Write-Once Optical Data Storage,” Applied Optics 41, 1998-2007 (2002).
  119. N. Miyagawa and M. Mansuripur, “Analog Recording on Phase-change Optical Disks,” Special Issue of J. Magn. Soc. Japan 25, No. 3-2, 437-440 (2001).
  120. M. Mansuripur, P. K. Khulbe, X. Xun, J. K. Erwin, and W. Bletscher, “Real-time studies of mark formation processes in phase-change and magneto-optical media using a two-laser tester,” J. Magn. Soc. Japan 25, 399-407 (2001).
  121. R. Liang, C. Peng, K. Nagata, K. Daly-Flynn, and M. Mansuripur, “Optical characterization of multilayer stacks used as phase-change media of optical disk data storage,” Applied Optics 41, 370-378 (2001).
  122. C. Peng and M. Mansuripur, “Measurement of the thermal coefficients of erasable phase-change optical recording media”, Applied Optics 41, 361-369 (2002).
  123. X. Xun, J. K. Erwin, W. Bletscher, J. Choi, S. Kallenbach, and M. Mansuripur,“Crystallization studies on phase-change optical recording media by use of a two-dimensional periodic mark array,” Applied Optics 40, 6535-6547 (2001).
  124. R. Liang, J. Carriere, and M. Mansuripur, “Intensity, polarization, and phase information in optical disk systems,”Applied Optics 41, 1565-1573 (2002).
  125. M. Mansuripur, “DNA, Human Memory, and the Storage Technology of the 21st Century,” SPIE Proceedings, Vol. 4342, 1-29 (2001).
  126. C. Peng and M. Mansuripur, “Partial response signaling for phase-change optical data storage without electronic equalization”, Applied Optics 41, 3479-3486 (2002).
  127. X. Xun, C. Peng, and M. Mansuripur, “Estimation of thermal coefficients of magneto-optical media,” Applied Optics 41, 4596-4602 (2002).
  128. P. K. Khulbe, T. Hurst, M. Horie, and M. Mansuripur, “Crystallization behavior of Ge-doped eutectic Sb70Te30 films in optical disks,” Applied Optics 41, 6220-6229 (2002).
  129. M. Mansuripur, P.K. Khulbe, S.M. Kuebler, J.W. Perry, M.S. Giridhar, and N. Peyghambarian,“Information Storage and Retrieval using Macromolecules as Storage Media,” SPIE Proceedings Vol. 5069, pp 231-243 (2003).
  130. A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Simulating near-field effects in high-density optical disk data storage,” (invited feature article), Computing in Science & Engineering, a joint publication of the IEEE Computer Society and the American Institute of Physics, Vol. 5, No. 6, pp 15-21 (November/December 2003).
  131. C. Peng and M. Mansuripur, “Amorphization induced by sub-nanosecond laser pulses in phase-change optical recording media,”  Applied Optics 43, 4367 (2004).
  132. M.S. Giridhar, K.B. Seong, A. Schülzgen, P.K. Khulbe, N. Peyghambarian, and M. Mansuripur, “Femtosecond pulsed laser micro-machining of glass substrates with application to microfluidic devices,” Applied Optics 43, 4584 (2004).
  133. A. Kosterin, V. Temyanko, M. Fallahi, and M. Mansuripur, “Tapered fiber bundles for combining high-power diode lasers,” Applied Optics 43, 3893 (2004).
  134. A. Kosterin, J. K. Erwin, M. Fallahi, and M. Mansuripur, “Heat and temperature distribution in a cladding pumped, Er:Yb co-doped phosphate fiber,” Review of Scientific instruments 75, 5166 (2004).
  135. A. R. Zakharian, M. Mansuripur and J. V. Moloney, “Transmission of light through small elliptical apertures,” Optics Express 12, 2631 (2004).
  136. K. Watabe, P. Polynkin, and M. Mansuripur, “Behavior of GeSbTeBi phase-change optical recording media under sub-nanosecond pulsed laser irradiation,”  Applied Optics 43, 4033-4040 (2004).
  137. K. Watabe, P. Polynkin, and M. Mansuripur, “Behavior of GeSbTeBi phase-change optical recording media under sub-nanosecond pulsed laser irradiation,” Proceedings of SPIE 5380, 342-350 (2004).
  138. K. Watabe, P. Polynkin, and M. Mansuripur, “Optical pump-and-probe test system for thermal characterization of thin metal and phase-change films,” Applied Optics 44,3167-3173 (2005).
  139. T. Vallius, J. Turunen, M. Mansuripur, and S. Honkanen “Transmission through single subwavelength apertures in thin metal films and effects of surface plasmons,”Journal of the Optical Society of America A, 21, Issue 3, 456-463 (2004).
  140. Tao Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Multimode interference-based photonic crystal waveguide power splitter,” Journal of Lightwave Technology 22, 2842 (2004).
  141. Tao Liu, A. Zakharian, R. Rathnakumar, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Applications of photonic crystals in optical data storage,” Proceedings of SPIE 5380, 430-438 (2004).
  142. P. Polynkin, V. Temyanko, M. Mansuripur, and N. Peyghambarian, “Efficient and highly scalable side pumping scheme for short, high power optical fiber lasers and amplifiers”, IEEE Photonics Technology Letters 16, 2024 (2004). Featured as “Efficient side-pumping scheme excites short fiber laser,” in Photonic Spectra 38, 116-18 (2004).
  143. N. Peyghambarian, T. Qiu, P. Polynkin, A. Schulzgen, L. Li, V. Temyanko, M. Mansuripur, J. V. Moloney, “Short fiber lasers produce record power/length of 1.33 W/cm,” Optics & Photonics News 15, 41 (2004).
  144. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Optics Express 12, 6106 (2004).
  145. M. Mansuripur, Y. Xie, A. R. Zakharian, and J. V. Moloney, “Transmission of light through slit apertures in metallic films,” IEEE Trans. Magnetics 41, 1012-1015 (2005).
  146. M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field,” Optics Express 12, 5375-5401 (2004).
  147. M. Mansuripur, A. R. Zakharian, and J. V. Moloney, “Radiation pressure on a dielectric wedge,” Optics Express 13, 2064-2074 (2005).
  148. A. R. Zakharian, M. Mansuripur, and J. V. Moloney, “Radiation pressure and the distribution of electromagnetic force in dielectric media,” Optics Express 13, 2321-2336 (2005).
  149. M. Mansuripur, “Radiation pressure and the linear momentum of light in dispersive dielectric media,” Optics Express 13, 2245-2250 (2005).
  150. M. Mansuripur and P. K. Khulbe, “Macromolecular data storage with petabyte/cm3density, highly parallel read/write operations, and genuine 3D storage capability,”Proceedings of SPIE 5380, 272-282 (2004).
  151. P. K. Khulbe, M. Mansuripur, and R. Gruener, “DNA translocation through a-hemolysin nano-pores with potential application to macromolecular data storage,” J. Appl. Phys. 97, 104317-1:7 (2005).
  152. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent-field based optical fiber sensor device for measuring the refractive index of liquids in microfluidic devices,”Optics Letters 30, 1273-1275 (2005). Also listed in the Virtual Journal of Nanoscale Science and Technology 11 (May 2005).
  153. A. Polynkin, P. Polynkin, A. Shultzgen, M. Mansuripur, and N. Peyghambarian, “Watts-level, short all-fiber laser at 1.5mm with a large core and diffraction-limited output via intra-cavity spatial mode filtering,” Optics Letters 30, 403-405 (2005).
  154. A. Polynkin, P. Polynkin, M. Mansuripur, and N. Peyghambarian, “Single-frequency fiber ring laser with 1W output power at 1.5mm,” Optics Express 13, 3179-3184 (2005). Featured as “Fiber ring laser generates 1W in a single frequency in eye-safe region,” Photonics Spectra39, 113 (June 2005).
  155. H. Zhang, D. Lu, T. Liu, M. Mansuripur, and M. Fallahi, “Direct laser writing of electro-optic waveguide on chromophore-doped hybrid sol-gel,” Appl. Phys. Lett. 85, 4275-4277 (2004).
  156. Tao Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact, photonic-crystal-based polarizing beam-splitter,” IEEE Photonics Technology Letters17, 1435-1437 (2005).
  157. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film,” Optics Express 13, 4485-4491 (2005).
  158. M. Mansuripur, “Angular momentum of circularly polarized light in dielectric media,” Optics Express 13, 5315-5324 (2005).
  159. 159. Tao Liu, M. Fallahi, M. Mansuripur, A.R. Zakharian, and J. V. Moloney, “Intersection of non-identical optical waveguides based on photonic crystals,” Optics Letters 30, 2409-2411 (2005).
  160. P. Polynkin, A. Polynkin, M. Mansuripur, J. V. Moloney, and N. Peyghambarian, “Single-frequency laser oscillator with watts-level output power at 1.5mm by use of a twisted-mode technique,” Optics Letters 30, 2745-2747 (2005).
  161. M. V. Berry, M. R. Jeffrey, and M. Mansuripur, “Orbital and spin angular momentum in conical diffraction,” J. Opt. A: Pure Appl. Opt. 7, 685-690 (2005).
  162. M. Mansuripur, “Radiation pressure and the distribution of electromagnetic force in dielectric media,” Proceedings of SPIE 5930, 0O-1:7 (2005).
  163. H. Yoda, P. Polynkin, and M. Mansuripur, “Beam quality factor of higher order modes in a step-index fiber,” IEEE Journal of Lightwave Technology 24, 1350-55 (2006).
  164. Tao Liu, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Fabrication of two-dimensional photonic crystals with embedded defects using blue-laser-writer and optical holography,” IEEE Photonics Technology Letters 18, 1100-1102 (2006).
  165. A. R. Zakharian, P. Polynkin, M. Mansuripur, and J. V. Moloney, “Single-beam trapping of micro-beads in polarized light: Numerical simulations,” Optics Express 14, 3660-3676 (2006).
  166. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through periodic arrays of sub-wavelength slits in a metallic host,” Optics Express 14, 6400-6413 (2006).
  167. P. Polynkin, A. Polynkin, D. Panasenko, N. Peyghambarian, M. Mansuripur, J. Moloney,“All-fiber passively mode-locked laser oscillator at 1.5mm with Watts-level average output power and high repetition rate,” Optics Letters 31, 592-594 (2006). Featured as “Mode-Locked Fiber Laser Oscillator Generates Multiwatt Output,” Photonics Spectra 40, p. 75 (April 2006)
  168. A. Polynkin, P. Polynkin, D. Panasenko, M. Mansuripur, J. Moloney, N. Peyghambarian,“Short-cavity passively mode-locked fiber laser oscillator at 1.5mm with 550 MHz repetition rate and high average power”, Electronics Letters 42, 157-159 (2006).
  169. D. Panasenko, P. Polynkin, A. Polynkin, J. Moloney, M. Mansuripur, N. Peyghambarian,“Er/Yb femtosecond ring fiber oscillator with 1.1W average power and GHz repetition rates”, IEEE Photonics Technology Letters 18. 853-855 (2006).
  170. K. Kieu and M. Mansuripur, “Tuning of fiber lasers by use of a single-mode biconic fiber taper,” Optics Letters 31, 2435-37 (2006).
  171. K. Kieu and M. Mansuripur, “Active Q-switching of a fiber laser with a micro-sphere resonator,” Optics Letters 31, 3568-3570 (2006).
  172. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Optical transmission at oblique incidence through a periodic array of sub-wavelength slits in a metallic host,” Optics Express 14, 10220-27 (2006).
  173. A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Surface plasmon polaritons on metallic surfaces,” Optics Express 15, 183-197 (2007).
  174. K. Kieu and M. Mansuripur, “Fiber laser using a microsphere resonator as a feedback element,” Optics Letters 32, 244-246 (2007).
  175. K. Kieu, K. Narumi, M. Mansuripur, ” Investigation of crystallization and amorphization dynamics of phase-change thin films by sub-nanosecond laser pulses,” Applied Optics 45, 7826-31 (2006).
  176. K. Kieu and M. Manusripur, ” Biconical fiber taper sensors,” IEEE Photonics Technology Letters 18, 2239-41 (2006).
  177. K. Kieu and M. Mansuripur, “Self-locked excitation scheme for microsphere resonators, “IEEE Photonics Technology Letters 19, 100-102 (2007).
  178. G. M. Skinner, K. Visscher, and M. Mansuripur, “Biocompatiable writing of data into DNA,”Journal of Bionanoscience 1, 17-21 (June 2007).
  179. F. Kalkum, G. Gay, O. Alloschery, J. Weiner, H. J. Lezec, Y. Xie, and M. Mansuripur,“Surface-wave interferometry on single subwavelength slit-groove structures fabricated on gold films,” Optics Express 15, 2613-2621 (2007).
  180. M. Mansuripur, ” Radiation pressure on submerged mirrors: Implications for the momentum of light in dielectric media,” Optics Express 15, 2677-2682 (2007).
  181. M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field in magnetic media.” Optics Express 15, 13502-13517 (2007).
  182. M. Mansuripur, “Modeling diffractive optical elements for optical data storage applications,” SPIE Proc. 6620, 66200N-1 (2007).
  183. M. Mansuripur, “Momentum of the electromagnetic field in transparent dielectric media,” SPIE Proc. 6644, 664413 (2007).
  184. K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Optics Letters 32, 2242-44 (2007).
  185. K. Kieu and M. Mansuripur, “All-fiber bidirectional passively mode-locked ring laser.” Optics Letters 33, 64-66 (2008).
  186. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Bloch mode analysis of transmission through periodic slit arrays in finite thickness metallic slabs,” SPIE Proc.6641, 66411S-1 (2007).
  187. M. Mansuripur, “Electromagnetic Stress Tensor in Ponderable Media,” Optics Express 16, 5193-98 (2007).
  188. M. Mansuripur, “Electromagnetic Force and Torque in Ponderable Media,” OpticsExpress 16, 14821-14835 (2008).
  189. M. Mansuripur, “Generalized Lorentz law and the force of radiation on magnetic dielectrics,” Proceedings of SPIE Symposium on NanoScience & Engineering 7038, 70381T (2008).
  190. Z. Deng, F. L. Lie, S. Shen, I. Ghosh, M. Mansuripur, and A. J. Muscat, “Water-based route to ligand-selective synthesis of ZnSe and Cd-doped ZnSe quantum dots with tunable ultraviolet A to blue photoluminescence,” Langmuir 25, 434-442 (2009).
  191. Z. Dneg, M. Mansuripur, A. J. Muscat, “New Method to Single-Crystal Micrometer-Sized Ultra-Thin Silver Nanosheets:  Synthesis and Characterization,” J. phys. Chem. C 113, 867-873 (2009).
  192. M. Mansuripur and A. R. Zakharian, “Maxwell’s macroscopic equations, the energy-momentum postulates, and the Lorentz law of force,” Physical Review E 79, 026608 (2009).
  193. Z. Deng, M. Mansuripur, A. J. Muscat, Simple colloidal synthesis of well-faceted single-crystal V-VI nanotubes with tunable optical band gap energy in the near-infrared,” submitted to J. Am. Chem. Soc., January 2009
  194. Z. Deng, M. Mansuripur, A. J. Muscat, “Simple colloidal synthesis of well-faceted single-crystal V-VI nanotubes with tunable optical band gap energy in the near-infrared,” submitted to J. Am. Chem. Soc., January 2009.
  195. Z. Deng, D. Chen, F. Tang, and M. Mansuripur, Growth of Single-Crystal Double-Directional Tellurium Nano-needles from CdTe Nanocrystals in Solution,” to appear inCrystal Growth & Design, February 2009.
  196. M. Mansuripur, “Comment on “Observation of a push force on the end face of a nanometer silica filament exerted by outgoing light,” submitted to Phys. Rev. Lett.(2009).
  197. M. Mansuripur, A. Zakharian, A. Lesuffleur, Sang-Hyun Oh, R. J. Jones, N. C. Lindquist, Hyungsoon Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Optics Express 17, 14001-14014 (2009).
  198. M. Mansuripur and A. R. Zakharian, “Theoretical analysis of the force on the end face of a nano-filament exerted by an outgoing light pulse,” Phys. Rev. A 80, 023823-1-7 (2009); also as a conference proceedings paper (with modifications) in “What is wrong with the interpretation of recent nano-filament experiments?” Proc. SPIE Vol. 7400, 740012-1-12 (2009).
  199. M. Mansuripur, “Can future storage technologies benefit from existing or emerging nano-tools and techniques?” Proc. SPIE Vol. 7505 75050F-1-3 (2009).
  200. M. Mansuripur and A. R. Zakharian, “Energy, momentum, and force in classical electro-dynamics: application to negative-index media,” Optics Communications 283, 4594-4600 (2010); also as a conference proceedings paper in Proc. SPIE OP101 73920Q-1-9.
  201. M. Mansuripur, “Resolution of Abraham-Minkowski controversy,” Optics Communications 283, 1997-2005 (2010).
  202. M. Mansuripur and A. R. Zakharian, “Whence the Minkowski Momentum?” Optics Communications 283, 3557-3563 (2010); also as a conference proceedings paper in Proc. SPIE 7400, 740010-1-11 (2009).
  203. C.H. Chu, C.D. Shiue, H.W. Cheng, M.L. Tzeng, H.P. Chiang, M. Mansuripur, and D.P. Tsai,“Laser-induced phase transitions in Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Optics Express 18, 18383-93 (2010).
  204. M. Mansuripur, “Nature of Electric and Magnetic Dipoles Gleaned from the Poynting Theorem and the Lorentz Force Law of Classical Electrodynamics,” Optics Communications 284, 594-602 (2011).
  205. M. Mansuripur, and D. P. Tsai, “New perspective on the reciprocity theorem of classical electrodynamics,” Optics Communications 284, 707-714 (2011).
  206. W.T. Chen, P.C. Wu, C.J. Chen, C-J. Weng, H-C. Lee, T-J. Yen, C-H. Kuan, M. Mansuripur and D.P. Tsai, “Manipulation of multidimensional plasmonic spectra for information storage,” Applied Physics Letters 98, 171106, pp 98-100 (2011).
  207. C.M. Chang, C.H. Chu, M.L. Tseng, H-P. Chiang, M. Mansuripur, and D.P. Tsai, “Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films,” Optics Express 19, 9492-9504 (2011).
  208. C.H. Chu, M.L. Tseng, C.D. Shiue, H.W. Cheng, H-P. Chiang, M. Mansuripur, and D.P. Tsai,“Laser fabrication of phase-change Ge2Sb2Te5 nano-rings, to appear in Optics Express, June 2011.
  209. M.L. Tseng, B.H. Chen, C.H. Chu, C.M. Chang, W.C. Lin, N.N. Chu, M. Mansuripur and D.P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Optics Express 19, 16975-16984 (2011).
  210. M. Mansuripur, Solar Sails, Optical Tweezers, and Other Light-Driven Machines,”  Tribute to Joseph W. Goodman, edited by H. J. Caulfield and H. H. Arsenault,Proceedings of SPIE Vol. 8122, 81220D~1-13(2011).
  211. M. Mansuripur, A.R. Zakharian, and E.M. Wright, Spin and orbital angular momenta of light reflected from a cone,” Physical Review A 84, 033813~1-12 (2011).
  212. M. Mansuripur, A.R. Zakharian, and E.M. Wright, “Spin-to-orbital angular momentum exchange via reflection from a cone,” Proceedings of SPIE Vol. 8097, 809716~1-9 (2011).
  213. M. Mansuripur, “Spin and orbital angular momenta of electromagnetic waves in free space,” Physical Review A 84, 033838~1-6 (2011).
  214. M. Mansuripur, “New perspective on the optical theorem of classical electrodynamics,” to appear in American Journal of Physics, March 2012.
  215. M. Mansuripur, “Deducing radiation pressure on a submerged mirror from the Doppler shift,” to appear in Physical Review A, April 2012.
  216. T.S. Mansuripur and M. Mansuripur, “The nonexistence of single-surface amplified total internal reflection,” submitted to Physical Review A, September 2011.
  217. M. Mansuripur, The trouble with the Lorentz Law of force: Incompatibility with Special Relativity and Momentum Conservation,”  Physical Review Letters 108,193901~1-4 January 2012.
  218. M. Mansuripur and A.R. Zakharian, Radiation pressure on a submerged partial reflector deduced from the Doppler shift,”  Physical Review A 86, 013841~1-9 (2012)
  219. M. Mansuripur, “Trouble with the Lorentz Law of Force: Response to Critics,” to appear in Proceedings of the SPIE Conference, San Diego, California, August 2012.
  220. M. Mansuripur and A.R. Zakharian, “Radiation pressure and photon momentum in negative-index media,” to appear in Proceedings of the SPIE Conference, San Diego, California, August 2012.
  221. M. Mansuripur, “Angular momentum exchange between light and material media deduced from the Doppler shift,” to appear in Proceedings of the SPIE Conference, San Diego, California, August 2012.
  222. M. Mansuripur, “On the Foundational Equations of the Classical Theory of Electro-dynamics,” submitted to Resonance, June 2012.
  223. C.M. Chang, Y.J. Liu, M.L. Tseng, N.N. Chu, D.W. Huang, M. Mansuripur and D.P. Tsai,“Characterization of Ge2Sb2Te5 thin film alloys using conductive-tip atomic force microscopy,” In Tribute to Stanford Ovshinski on the occasion of his 90th birthday, Physica Status Solidi B, 1-6 (2012).
  224. K. Tada, G. A. Cohoon, K. Kieu, M. Mansuripur and R. A. Norwood, “Fabrication of High-Q Microresonators Using Femtosecond Laser Micromachining,” IEEE Photonics Technology Letters 25, 430-433 (2013).
  225. M. Mansuripur, “On the Foundational Equations of the Classical Theory of Electro-dynamics,” Resonance 18, 130-155 (2013).
  226. P.C. Lau, R.A. Norwood, M. Mansuripur and N. Peyghambarian, “An effective and simple oxygen nanosensor made from MPA-capped water soluble CdTe nanocrystals,” Nanotechnology 24, 015501~1-8 (2013).
  227. P.C. Lau, Z. Zhu, R.A. Norwood, M. Mansuripur, and N. Peyghambarian, “Thermally robust and blinking suppressed core/graded-shell CdSe/CdSe1xSx/CdS ‘giant’ multishell semiconductor nanocrystals,” Nanotechnology 24, 475705~1-9 (2013).
  228. M. Mansuripur, A.R. Zakharian, and E.M. Wright, “Electromagnetic-force distribution inside matter,” Physical Review A 88, 023826~1-13 (2013).
  229. M. Mansuripur, “The Force Law of Classical Electrodynamics: Lorentz versus Einstein and Laub,” Proceedings of SPIE Vol. 8810, 88100K~1-18 (2013).
  230. M. Mansuripur, “Optical Manipulation: Momentum Exchange Effect,” News & Views, Nature Photonics 7, 765-766 (2013).
  231. M. Mansuripur, The Lorentz force law and its connections to hidden momentum, the Einstein-Laub force, and the Aharonov-Casher effect,to appear in IEEE Transactions on Magnetics, 2014.
  232. T. S. Mansuripur and M. Mansuripur, “Fresnel reflection from a cavity with net roundtrip gain,” Applied Physics Letters 104, 121106~1-4 (2014).
  233. M. Mansuripur and A. R. Zakharian, “Reply to ‘Comment on ‘Theoretical analysis of the force on the end face of a nanofilament exerted by an outgoing light pulse’’,” Phys. Rev. A 89, 057802, pp 1-5 (2014).
  234. P.C. Lau, R.A. Norwood, M. Mansuripur and N. Peyghambarian,  “An effective nanosensor for organic molecules based on water-soluble mercaptopropionic acid-capped CdTe nanocrystals with potential application in high-throughput screening and high-resolution optical microscopy,” Biomedical Optics Express 5, 2420-2434 (2014).
  235. M. Mansuripur,“On the Electrodynamics of Moving Permanent Dipoles in External Electromagnetic Fields” Proceedings of SPIE Vol. 9160, 91600X~1-29 (2014).
  236. M. Mansuripur, “Electromagnetic force and torque in Lorentz and Einstein-Laub formulations,” Proceedings of SPIE 9164, 91640B~1-16 (2014).
  237. M. Mansuripur, “The Charge-Magnet Paradoxes of Classical Electrodynamics,” Proceedings of SPIE 9167, 91670J~1:12 (2014).
  238. M. Mansuripur, “Mechanical effects of light on material media: radiation pressure and the linear and angular momenta of photons,” Proceedings of SPIE 9186, 91860S~1-6 (2014).
  239. M. Mansuripur, “Advances in Macromolecular Data Storage,” Proceedings of SPIE 9201, 92010A~1-6 (2014).
  240. Z. Zhu, T. Mankowski, K. Balakrishnan, A.S. Shikoh, F. Touati, M.A. Benammar, M. Mansuripur, and C.M. Falco, “Transparent conducting electrodes based on thin, ultra-long Copper nanowires and graphene nano-composites,” Proceedings of SPIE 9177, 91770J~1:6 (2014).
  241. T.S. Mankowski, Z. Zhu, K. Balakrishnan, A.S. Shikoh, F. Touati, M.A. Benammar, M. Mansuripur, and C.M. Falco, “Metal nanowire-graphene composite transparent electrodes,” Proceedings of SPIE 9177, 91770I~1:6 (2014).
  242. Z. Zhu, T. Mankowski, K. Balakrishnan, A.S. Shikoh, F. Touati, M.A. Benammar, M. Mansuripur, and C.M. Falco, “Sol-gel deposition and plasma treatment of intrinsic, aluminum-doped, and gallium-doped zinc oxide thin films as transparent conductive electrodes,” Proceedings of SPIE 9561, 956109~1:5 (2015).
  243. Z. Zhu, T. Mankowski, K. Balakrishnan, A.S. Shikoh, F. Touati, M.A. Benammar, M. Mansuripur, and C.M. Falco, “Ultrahigh Aspect Ratio Copper-Nanowire-Based Hybrid Transparent Conductive Electrodes with PEDOT:PSS and Reduced Graphene Oxide Exhibiting Reduced Surface Roughness and Improved Stability,” ACS Applied Materials & Interfaces 7 (30), 16223-30 (2015).
  244. Z. Zhu, T. Mankowski, K. Balakrishnan, A.S. Shikoh, F. Touati, M.A. Benammar, M. Mansuripur, and C.M. Falco, “Hybrid transparent conductive electrodes with copper nanowires embedded in a zinc oxide matrix and protected by reduced graphene oxide platelets,” Journal of Applied Physics 119, 085303, pp1-5 (2016).
  245. Z. Zhu, T. Mankowski, K. Balakrishnan, A.S. Shikoh, F. Touati, M.A. Benammar, M. Mansuripur, and C.M. Falco, “Sol-gel deposited aluminum-doped and gallium-doped zinc oxide thin-film transparent conductive electrodes with a protective coating of reduced graphene oxide,” to appear in SPIE Journal of Nanophotonics (2016).
  246. M. Mansuripur, “Reply to ‘Comment on ‘Deducing radiation pressure on a submerged mirror from the Doppler shift’’,” Physical Review A 92, 017804~1:2 (2015).
  247. G. Spavieri and M. Mansuripur, “Origin of the Spin-Orbit Interaction,” Physica Scripta 90, 085501, pp1-11 (2015).
  248. M. Mansuripur, “Electric and Magnetic Dipoles in the Lorentz and Einstein-Laub Formulations of Classical Electrodynamics,” Proceedings of SPIE 9370, 93700U~1-15 (2015).
  249. M. Mansuripur, “Tutorial: Opto-mechanical cooling by the back-action of cavity photons,” in Optical Trapping and Optical Micromanipulation XII, edited by K. Dholakia and G. C. Spalding, Proceedings of SPIE 9548, 954808~1-7 (2015).
  250. M. Mansuripur, “Energy and linear and angular momenta is simple electromagnetic systems,” in Optical Trapping and Optical Micromanipulation XII, edited by K. Dholakia and G. C. Spalding, Proceedings of SPIE 9548, 95480K~1-24 (2015).
  251. M. Mansuripur, “Light-Matter Interaction: Conversion of Optical Energy and Momentum to Mechanical Vibrations and Phonons,” in Quantum Sensing and Nano Electronics and Photonics XIII, edited by M. Razeghi, G.J. Brown, and J.S. Lewis, Proceedings of SPIE 9755, 975521~1-34 (2016).
  252. M. Mansuripur, M. Kolesik, and P. Jakobsen, “Leaky Modes of Dielectric Cavities” Spintronics IX, edited by H.-J. Drouhin, J.-E. Wegrowe, and M. Razeghi, Proceedings of SPIE 9931, 99310B~1:20 (2016).
  253. Z. Zhu, T. Mankowski, A.S. Shikoh, F. Touati, M.A. Benammar, M. Mansuripur, and C.M. Falco, “Ultra-high aspect ratio copper nanowires as transparent conductive electrodes for dye sensitized solar cells” Thin Films for Solar and Energy Technology VIII, edited by M.J. Heben and M.M. Al-Jassim, Proceedings of SPIE 9936, 993603~1:8 (2016).
  254. M. Mansuripur, “Comment on Jacksons analysis of electric charge quantization due to interaction with Direc’s magnetic monopole” Scientia Iranica, Transactions D: Computer Science & Engineering and Electrical Engineering, 23 (6), pp2874-80 (December 2016).
  255. M. Mansuripur, Electromagnetic Force and Momentum,” in Roadmap on Structured Light, Journal of Optics (2016).
  256. M. Mansuripur,“Electromagnetic Angular Momentum” in Roadmap on Structured Light, Journal of Optics (2016).
  257. M. Mansuripur, “Optical angular momentum in classical electrodynamics” Physica Scripta 92, 065501~1-9 (2017).
  258. M. Mansuripur, M. Kolesik, and P. Jakobsen, “Leaky Modes of Solid Dielectric Spheres” Physical Review A 96, 013846~1-14 (2017).
  259. M. Mansuripur and Pin Han, “Thermodynamics of Radiation Pressure and Photon Momentum” published in Optical Trapping and Optical Micromanipulation XIV, edited by K. Dholakia and G.C. Spalding, Proceedings of SPIE 10347, 103471y, PP1-20 (2017) DOI: 10.1117/12.2274589
  260. M. Mansuripur, “Nature of the electromagnetic force between classical magnetic dipoles” published in Spintronics X, edited by H.-J. Drouhin J.E. Wegrowe, M. Razeghi, and Jaffres, Proceedings of SPIE 10357, 103570R-1:6(2017). doi: 10.1117/12.2273216
  261. M. Mansuripur, “Force, Torque, Linear Momentum, and Angular Momentum in Classical Electrodynamics,” Applied Physics A 123:653, pp1-11(2017).