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Magnetization reversal in thin magnetic films with perpendicular anisotropy 
Masud Mansuripur 
Xerox Research Centre. 2480 Dunwin Drive. Mississauga. Ontario. L5LIJ9 Canada 

(Received 18 May 1981; accepted for publication 22 October 1981) 

A one-dimensional theory of magnetization reversal in thin, perpendicularly anisotropic 
magnetic films is presented. It is postulated that the presence of a defective point creates an 
infinitely deep, infinitely narrow potential well which inhibits the rotation oflocal magnetization. 
The interval D between neighboring defects, the saturation magnetization M s ' the anisotropy 
constant K u' and the exchange energy constant A are assumed to be finite and uniform across the 
film. Starting with an initial state where the film is uniformly magnetized to saturation in the easy 
direction, we show that a discontinuous change of state occurs when the reverse external field H 
reaches a critical value He' The domains thus nucleated at the critical field expand to cover the 
entire area of the film asH increases beyond He . Using the normalized values of H andD, defined, 
respectively, as h = H 1(2KJM,) and d = D 1(4A IKu )112, we show that the critical field he is a 
function only of d and that its value decreases significantly as d increases. 

PACS numbers: 75.60.Ej, 7S.70.Kw 

I. INTRODUCTION 

Magnetic films with perpendicular anisotropy have 
now been the subject of study for a few years. The interest in 
them arises from their potential applications in high-density 
storage devices for computers. 1 In such applications one is 
always concerned with the behavior of magnetization in the 
presence of external magnetic fields. In particular, one is 
interested in the mechanism of magnetization reversal and in 
the hysteresis characteristics of the film. Experimentally, it 
has been observed that the reversal process starts with the 
nucleation of reverse magnetized domains at certain loca­
tions; the process then continues with the expansion of these 
domains to the entire area of the film.2.3 

In this paper we present a one-dimensional model for 
the magnetic film for which the minimization offree energy 
leads to results similar to the aforementioned experimental 
observations. The model assumes the existence of infinitely 
deep, infinitely narrow potential wells at certain locations in 
the film. The magnetic dipole at the site of a potential well is, 
therefore, obliged to remain in a fixed configuration, while 
other dipoles can assume different orientations in response 
to variations of the external field. One can think ofthis mod­
el as an idealization of the physical situation in which an 
inhomogeneous film structure creates a nonuniform poten­
tial field across the film. 

In writing the expression for free energy we will use the 
micromagnetic theory4 and include the effects of anisotropy, 
exchange and external field, neglecting the contributions 
from all other sources. Our neglect of the demagnetizing 
field, in particular, can be a serious drawback unless we re­
strict attention to temperatures close to the Curie tempera­
ture where the demagnetizing energy is, in fact, negligible. 

In Sec. II the Euler-Lagrange equation for the extre­
mum points of free energy will be derived and solved; the 
various solutions of this equation will be examined in Sec. III 
and the solution corresponding to the absolute minimum of 
free energy will be identified. Numerical results of this analy-

sis are presented in the final section. 

II. MINIMIZATION OF FREE ENERGY VIA THE EULER­
LAGRANGE EQUATION 

A one-dimensional array of magnetic dipoles, located 
between x = - D 12 and x = + D 12, and subjected to a re­
verse external field H is shown in Fig. 1. The dipoles at 
x = ± D /2 are located in deep, narrow potential wells and 
are thus obliged to remain in the direction of the Z axis; other 
dipoles are free to assume any orientations as long as they 
remain in the XZ plane. Let us assume that the film has 
uniaxial anisotropy along Z, and that initially all dipoles are 
aligned in the direction of the easy axis. The free energy E[ 
of the system can be written as3 

J
D!2 

E., = [A (d8ldxf 
O!2 

+ Ku sin28 + HM, cos 8] dx, (1) 

where A is the exchange energy constant, Ku is the aniso­
tropy constant, Ms is the saturation magnetization and 8 (x) 
is the angle between the dipole at x and the Z axis. Because of 
symmetry, 8 (x) must satisfy the following conditions: 

8 (x = ± D /2) = 0; (d8 Idx) lx"0 = 0; 

8(x) = 8( -x). 

To find the extremum points of ET one must solve the fol­
lowing Euler-Lagrange equation 

2K" Sin 8 cos 8 - HM, sin 8 - 2A (d 28 Idx2
) = 0 (2) 

which, upon defining A = (A IK,,)1!2 and h = H 1(2K"IM,), 
reduces to 

(d Idx)[(d8 /dX)2 - (2h I A 2) cos 8 - (1/ A f sin28] = 0.(3) 

Noting that (d8 Idx)ix 0 = 0 and defining 8 0 as the value of 
8 at x = 0 we arrive at 

(Ad8/dx)2 = (cos 8 - cos ( 0 )(2h - cos 8 - cos ( 0 ), (4) 

The trivial solution 8 (x) = 0 always satisfies Eq. (4). To ob­
tainothersolutionslet Y(x) = cos 8 (x) and Yo = cos 8 0 and 
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restrict attention to the region O<;x<;D /2 where (dY /dx»O. 
One obtains 

dx = lAdY /[(Y - Yo)(2h - Y - Yo)(1 - Y)(1 + y)]1/2J 

O<;x<;D /2. (5) 

The trivial solution Y (x) = 1 can no longer be obtained 
from Eq. (5); nevertheless it is still an acceptable solution of 
the Euler-Lagrange (E-L) equation. As for the other solu­
tions, Eq. (5) can be integrated to yield x as an explicit func­
tion of Y; noting that Y(D /2) = cos () (D /2) = 1 wearriveat5 

x = D /2 - A (h - Yo)-1/ 2F(;,q) (6) 

where F(;,q) = sg (1 - q2 sin2e ) - 1/2de is the elliptic inte­
gral of the first kind and 

; = arcsin[(2(1 - Y)(h - Yo)/[(2h - Y - Yo)(1 - YO)])1/2], 

q = 0.5[(1 - Yo)(2h - Yo + 1)/(h - Yo)]1/2. 

From Eq. (6) the value of Yo can be determined self consis­
tently. Setting x = 0 and Y = Yo leads to the following equa­
tion for Yo: 

(h - YO)-1/2K(q) = d, (7) 

where K(q) = F(11"/2,q) is the complete elliptic integral of the 
first kind and where d = D /(2..1. ) is the normalized interval 
between defects. 

Plots of(h - Yo) - 1/2K(q) vs Yo for several values of hare 
shown in Fig. (2). It is readily observed that, depending on 
the values of hand d, Eq. (7) can have zero, one, or two 
solutions. For each solution Yo of this equation, Eq. (6) yields 
a consistent solution of the E-L equation. When there are 
two solutions, the one corresponding to the right side of Fig. 
2 will be denoted S I and the one corresponding to the left side 
S2. Taking the trivial solution Y(x) = 1 into account (denoted 
by So), one concludes that for a given set of parameters the E­
L equation can have one, two, or three solutions. The next 
step is, therefore, to evaluate E T for each solution and identi­
fy the one that corresponds to the absolute minimum offree 
energy. 

Ill. EVALUATION OF FREE ENERGY 

The value of the free energy corresponding to the trivial 
solution () (x) = 0 can be easily obtained from Eq. (1) as 

[ET/2d(AKu)I12] = 2h. (8a) 

For the states represented by Eqs. (6) some tedious algebra 
leads to 

D 
-"2 

z 

o +R.. X 
2 

FIG. 1. One-dimensional model ofa thin magnetic film. 
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[Er/2d(AKu)1/2] = (1 + Yo)(1 + Yo - 2h) 
+ (4/d)(h - Yo)1/2E(q) 

+ 2h [1 - 2(h - Yo)II 2Z(1],q)], 
(8b) 

where E(q) = S~/2( 1 - q2 sin2e ) 1/2de is the complete elliptic 
integral of the second kind; q is the same as defined in Eq. (6); 
Z(1],q) = E(1],q) - E(q)F(1],q)/K(q) is the Jacobi zeta func­
tion; and 1] = Arcsin[(h + 1/2 - YoI2)-1/2]. 

To illustrate the behavior of the solutions of the E-L 
equation we have plotted in Fig. 3 the corresponding curves 
of free energy versus h for a film with d = 4. The curve So 
represents the trivial solution and the curves S I and S2 corre­
spond to the solutions represented by Eq. (6). We make the 
following observations: 

(i) For small values of h the trivial solution is the only 
solution of the E-L equation and, therefore, the state 
() (x) = 0 represents the stable state of the system. 

(ii) At a certain value of h, two other solutions appear 
simultaneously. One of these solutions (SI) corresponds to a 
local maximum offree energy and cannot represent a stable 
state. The other solution (Sz) corresponds to a local mini­
mum of ET but initially it has a larger free energy than the 
trivial solution. Therefore, for a certain range of h the system 
remains in the state () (x) = 0, even though other solutions to 
the E-L equation exist. 

(iii) Beyond some critical field he' the solution Sz be­
comes the state of minimum free energy. For h > he' there­
fore, the solution S2 represents the stable state of the system. 

The above remarks, although made in connection with 
Fig. 3 which corresponds to the special case of d = 4, remain 
valid for most values of d. In fact, it can be shown that the 
curves of Fig. 3 are characteristic of the solutions of the E-L 
equation for d> do = 1T"/(2y13). 

For d<;do a different set of curves applies; Fig. 4 is typi­
cal of the behavior of solutions of the E-L equation in the 
region d<do. The general features of this region are (i) The 
only nontrivial solution (SI) exists for relatively large values 
of h. (ii) The free energy for SI is never greater than the free 
energy for So. (iii) The transition from So to SI at the critical 
point is smooth, i.e., the change in magnetization occurs 
continuously. 

6r--;--~~r-'-----~----'-----~ 
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FIG. 2. Plots of(h - YO)-1/
2K(q) vs Yo for several values of h. 
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FIG. 3. Free energy vs h for solutions of the Euler-Lagrange equation 
(d=4). 

As a result, films with d<.do must exhibit extraordinar­
ily large coercive forces and nonsquare hysteresis loops. We 
shall not pursue the case of small d any further in this paper. 
In the next section attention will be focussed on situations 
with relatively large values of d where predictions of the 
theory are qualitatively similar to effects observed experi­
mentally in MnBi films. 

IV. NUMERICAL RESULTS AND CONCLUSIONS 

Figure 3 shows that for a film with d = 4 the transition 
from So to Sz occurs at he = 0.42. For this film, Fig. 5 shows 
plots oflocal magnetization Y(x) = cos e (x) vsx at the criti­
cal field h = he and at a much larger field h = lOhe. The 
trivial solution Y(x) = 1 which corresponds to h < he is also 
shown in this figure. The curve for h = he shows the dramat­
ic change at the transition point; the nucleated domain has 
already covered a significant portion of the interval between 
defects. The curve for h = lOhe shows that at large values of 
h the entire area of the film (except for the immediate neigh­
borhood of the defective points) must be reverse magnetized. 

The total magnetization 

(DIZ 

M(h) = LD!2 Y(x)dx 

cal field h = he and at a much larger field h = lOhe. The 
trivial solution Y (x) = 1 which corresponds to h < he is also 
shown in this figure. The curve for h = he shows the dramat­
ic change at the transition point; the nucleated domain has 
already covered a significant portion of the interval between 
defects. The curve for h = lOhe shows that at large values of 
h the entire area of the film (except for the immediate neigh­
borhood ofthe defective points) must be reverse magnetized. 

The total magnetization 
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FIG. 4. Free energy vs h for solutions of the Euler-Lagrange equation 
[d = 1T/(2V3)). 

f
'!2D 

M(h)=(l/Dl- I !2D Y(x)dx 

can be obtained from Eq. (6) by integration and has the fol­
lowing closed form 

M(h) = 1 - 2(h - YO)
1/2Z(1],q). (9) 

where 1], q, and the Jacobi zeta function Z have already been 
defined in the previous sections. Plots of M (h ) vs h for several 
values of d are shown in Fig. 6. (The complete hysteresis 
loops have been obtained by arguing that the magnetization 
at x = ± D /2 must be reversed in the limit when h-> 00 .) 

The dotted curve in Fig. 6 shows the terminii of the first 
order jumps for all values of d. Note in particular that the 
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FIG. 5. Local magnetization in the region between neighboring defects for 
different values of h. (d = 4). 
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FIG. 6. Hysteresis loops for different values of d. (The dotted curve is the 
terminii of the first order jumps for all values of d.) 

squareness of the loops increases with d and that films with 
larger values of d exhibit smaller coercivities. The jumps 
vanish at h = 4 which corresponds to d = 1T/(2v'3). 

Typically, for films with Ku _106 ergs/cm3 and 
Ms - 102 G the measured coercivity is of the order of 103 Oe. 
This means that he -10- 1 which, according to our theory, 
corresponds to large values of d. The theory can, therefore, 
predict hysteresis loops with a high degree of squareness, in 
accordance with experimental data. It can also explain the 
experimentally observed tails of the hysteresis 100ps,6.7 sug­
gesting that pinning may indeed control the hysteretic be­
havior in these films. For a typical film A _10-6 ergs/cm 
which, together with the above value of K u , results in A-I 02 

A. The interval between defects D can thus assume values in 
the range of a few hundred to a few thousand angstroms. 
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A final remark, concerning the thermodynamic stabil­
ity of the solutions So, SI' and S2 of the E-L equation, is in 
order here. As was mentioned earlier, SI corresponds to a 
local maximum of free energy and is, therefore, an unstable 
state of the system. This maximum is located between the 
two stable states So and S2 and the energy barrier that sepa­
rates So from S2 is characterized by the free energy of SI' The 
dynamics of the transition between stable states, which we 
did not discuss in this paper, is affected by the height of this 
energy barrier. 
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