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Abstrtct--The effect of steady state uniaxial extensional flow on a solution of rigid rodlike macromolecules 
is theoretically studied. The mean field theory of Maier and Saupe is extended to cover situations in which 
the macromolocular solution is subjected to an extensional flow field. It is found that for a given solution a 
critical flow gradient exists beyond which the first order nematic-isotropic phase transition, which is typical 
of such solutions in the absence of flow. disappears. A similar result is obtained when the theory of Onsager 
is applied to the problem. Order parameter as a function of flow gradient is calculated and it is shown that 
the contribution of flow to the ordering of macromolecules is most significant when the stationary solution is 
isotropic but close to the transition point, 

I. I N T R O D U C T I O N  

Rigid rodlike macromolecules which appear in both natural and synthetic forms have received 
widespread attention in recent years. Proteins in helical forms, DNA in its helix configuration, 
tobacco mosaic virus and a large number of aromatic polyamides belong to this class of 
macromolecules. Of particular interest are solutions of rodlike polymers in appropriate 
solvents. Onsager (1949) showed that such solutions can exhibit anisotropic phases at relatively 
low solute concentrations. The anisotropic phase is characterized by a high degree of 
macromolecular orientation and the steric repulsion or excluded volume effect can be solely 
responsible for the existence of this ordered phase. On the technological facet, fibers with 
exceptional mechanical properties have been spun from solutions of rodlike mcromolecules; 
Nomex (marketed by Dupont), Conex (by Teijin, Japan), Ferilolt (by the Soviet Union), and 
Kevl ,  r (by Dupont), all introduced in the late 1960s and early 1970s, are but a few examples of 
such commercially produced fibers. The high tensile strength of fibers has been attributed to the 
large degree of macromolecular orientation. 

In addition to the excluded volume effect, the presence of external fields can affect the 
degree of orientation or anisotropy of a macromolecular solution. The frictional forces between 
the solvent and the solute molecules created in a flow with nonzero velocity gradient, for 
example, can induce changes in the solution properties. In particular, the uniaxial extensional 
flow, an example of which is shown in figure I and which may be used to represent the flow of 
spinning dope between the spinneret and the take-up device in a fiber spinning process, can 
contribute significantly to the orientation of rodlike macromolecules along the elongation axis 
(Denson 1973, Marrucci 1975; Petrie 1979). An increase of the stretch factor from 1.9 to 5.11 in 
a typical experiment has reportedly reduced the average orientation angle from 37 ° to 22 °, 
resulting in a tenacity of II,000 bar in place of 5,000 bar (Kwolek et al. 1977). 

Experimental investigations of polymeric solutions undergoing extensional flow have been 
reported in the literature (Jeffrey & Acrivos 1976; Reher & Karmer 1980; Peng & Landel 1980). 
Both the "four roller" and the "tubeless siphon" have been used to simulate the extensional 
flow. For the most part, however, these experiments have been concerned with flexible 
macromolecules and little, if any, data on the extensional flow behavior of rodlike molecules is 
available at the present time. On the theoretical side, the effect of extensional flow on dilute 
solutions of rodlike macromolecules has been fully investigated (Bird et al. 1977). As for the 
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Figure I. A solution of rigid rodlike macromolecules undergoing uniaxial extensional flow in the Z 
direction. (Examples of such flow are the flow of spinning dope after the spinneret holes and the flow of a 

tubeless siphon.) 

concentrated regime, Flory's lattice theory has been extended to include the effect of exten- 
sional flow (Marrucci & Ciferri 1977). This work has shown that for a given macromolecular 
solution a critical flow gradient exists beyond which no concentration range can be found in 
which the phase separation would occur. 

The goal of the present paper is to extend two other existing theories of concentrated 
solutions to include the effect of extensional flow. These are the mean field theory of Maier & 
Saupe (1959 & 1960) and the theory of Onsager (1949). The concentration range we will be 
concerned with is the one to which the theory of Onsager can be applied. This regime is 
sometimes referred to in the literature as the semi-dilute regime. In section 2 a brief account of 
the effect of flow on dilute solutions is given. Mean field theory in the presence of flow is 
discussed in section 3, while application of Onsager's method to the problem is the subject of 
section 4. Section 5 is devoted to some general remarks and conclusions. 

2. ORIENTATIONAL EFFECT OF THE EXTENSIONAL FLOW FIELD ON DILUTE SOLUTIONS 
OF RIGID RODLIKE MACROMOLECULES 

In the cartesian coordinate system (X, Y, Z) a uniaxial, homogeneous elongational flow is 
characterized in the steady state by the following constant velocity-gradient tensor (Petrie 
1979): 

- -  0.5y 0 ! J  
V~' = 0 -0 .5y [2-1] 

0 0 

where the elongation direction is the Z axis and the rate of elongation is 3, (figure !). While this 
flow field tends to orient the rodlike solute molecules in the direction of the Z axis, Brownian 
motion of the much smaller solvent molecules prefers the random distribution of spatial 
orientations. The competition between these forces results in an orientational distribution 
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function 0(0) which must satisfy the following differential equation (Bird et aL 1977): 

d/d0 [D sin (O)(dldO)O(O) + 33, cos (0) sin:(0)O(0)] = 0. (2-2) 

In this equation 0 is the angle between the long axis of the rodlike macromolecules and the Z 
axis; O(0) sin (0) dO is the probability of finding a given macromolecule in the range between 0 
and 0 + dO; and D is the rotational diffusion constant. In general, we can write 

D = K77g" [2-3] 

where K is the Boltzmann constant: T is the absolute temperature of the solution: and ~" is a 
parameter whose value depends on the shape of macromolecules as well as on the nature of 
their hydrodynamic interaction with the solvent. Although approximate analytical expressions 
for s r exist in the literature (Harrington 1964), we regard it here as a phenomenological 
parameter whose numerical value should be determined experimentally. 

The solution to [2-2] can be written as 

~,(0) = exp [(~71KT)Pz(cos 0)] 

fo ' [(~ylKT)P2(cos 0)1 d(cos O) [2-4] exp 

where P,(cos O) = 0.5(3 cos20- 1) is the second Legendre polynomial, and the integral in the 
denominator is simply a constant normalizing factor. 

The average value of P2(cos 0), denoted by (P2), is usually used as an order parameter for 
the system (Priestley et al. 1975). Knowing the orientational distribution function from [2-4], we 
have calculated the order parameter for a dilute solution of rodlike macromolecules undergoing 
extensional flow. The plot of (P2) vs (~3'/KT) is shown in figure 2 where, as expected, the order 
parameter is seen to be an increasing function of elongation rate 3'. As 3'~0 the order parameter 
vanishes and therefore the orientation of rods becomes totally random, while as 3'---,~ the order 
parameter approaches unity which corresponds to a complete alignment of macromolecules in 
the elongation direction of the flow field. 

3. ORIENTATIONAL EFFECT OF THE EXTENSIONAL FLOW FIELD ON SEMI-DILUTE 
SOLUTIONS OF RIGID RODLIKE MACROMOLECULES: MEAN-FIELDTHEORY 

Semi-dilute solutions of rigid rodlike macromolecules are known to exhibit nematic order 
even in the absence of external orienting fields (Onsager 1949; Flory 1956). Order in the nematic 
state is the result of a compromise between translational and rotational entropies whereby the 
greater freedom of lateral motion due to the near parallel orientation of macromolecules 
compensates for their rather severely restricted freedom of rotation. The temperature-induced 
transition from isotropic to nematic state in these solutions can be best described by the mean 
field theory of Maier & Saupe (1959--60), in which the effect of neighboring rods on a test rod is 
cast in a potential field to which the test rod is subjected. Let 0 denote the angle between the 
long axis of the test rod and the nematic director. Then, in its simplest version, the mean field 
potential can be written as (Priestley et al. 1975). 

cki,,( O) = - a (  P,) P,(cos O) [3-11 

where, as before, /'.,(cos 0) = 0.5(3 cos:0 - I) and (P2) is the order parameter, a is a positive 
constant to be determined experimentally. In the above equation, (P2) represents the effect of 
long range order on the test rod and must be determined self-consistently, a signifies the 
strength of the intermolecular field: although a is known to be an increasing function of solute 
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Figure 2. Order parameter (P:) as a function of flow gradient ~, for a dilute solution. 

concentration C, the exact relationship between them is as yet unknown. The molecular field 
theory of Maier and Saupe is. therefore, best suited for the study of situations in which C and 
consequently c¢ are constants. 

To study the effect of extensional flow on a semi-dilute solution, we first notice in [2-4] that 
the single rod in the dilute regime is subject to the following potential field: 

~b¢.,(0) = -~'yP:(cos 0). [3-21 

Since in the semi-dilute regime the concentration of macromolecules is not very large, we 
ignore the effect of disturbance caused by the neighboring rods on Ihe flow field and continue to 
use ~b¢,, in [3-2] as the flow-induced potential field for the test rod. The net potential field can 
then be written as 

4~(0) = 4,...(0) + ~6,,,(0) = - [ (y  + a(P2)lP.,(cos 0) [3-3] 

in which (P) must be determined self-consistently, i.e. (P:) must satisfy the following equation: 

f ~ P,(cos 0) exp [-  ~b(o)lKTld (cos o) 
(P:) = z [3-4] [ exp [ - ~(O)/KTI d(cos 0) 

) 

In reality, the increased concentration of macromolecules in the semi-dilute regime decreases 
the rotational diffusion constant D, whereas ordering increases this parameter (Doi 1981). Also 
the hydrodynamic interaction of the neighboring rods with the solvent disturbs the flow field at 
the sight of the test rod (Bird et al. 1977). In a rigorous treatment of the problem these effects 
must certainly be taken into account in which case terms containing y(P:) and higher order 
terms would appear in [3-31. We feel, however, that the simple potential of [3-3] in its present 
form contains the essence of the problem and is capable of giving insight without complicating 
the analysis. 

Equation [3-41 has been solved numerically and plots of (P:) vs (KTla) for several values of 
((y/a) are shown in figure 3. Notice that when the flow gradient is nil the usual first order 
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Figure 3. Temperature dependence of the order parameter for a semi-dilute solution undergoing extensional 
flow with different flow gradients. (If the flow is not too weak. the phase transition disappears.) 

transition at (KTla) = 0.22019 is presentt, while when the flow gradient is not exceedingly small 
(i.e. when (~'~/a) >- 0.01), the abrupt transition disappears and the order parameter vs (KTla) 
exhibits a smooth behavior. 

Figure 4 shows plots of (p:) vs (~'~/a) for several values of (KT/a). One can deduce from 
these curves that when the solution is isotropic and far from the transition point (i.e. when 
(KT/a) .> 0.22), relatively large flow gradients are required for the achievement of any 
significant degree of orientation. When the solution is anisotropic and, again, far from the 
transition point (i.e when (KT/a),~ 0.22), the orientation is already there and there is not much 
that the flow gradient can do about it. It is therefore around the transition point, and specially in 
the case of isotropic solutions, that the elongational flow has its most pronounced effect; the 
curve for (KT/a)= 0.24 in figure 4 shows the dramatic increase of the order parameter at 
moderate values of the flow gradient. 

4, ORIF.NTATIONAI. EFFECT O I : T H l i  EXTENSIONAl ,  FI,OW FIEI .D ON S I 'M I -D ILUTE 
SOI.UTIONS OF RIGID RODI.IK[" MACROMOI.F.CUI.ES: TrlEORY OF ONSAGER 

Onsager (1949) studied the statistical mechanics of semi-dilute solutions of rodlike 
macromolecules and derived an expression for the solution's free energy with due consideration 
given to the steric hindrance effect. Given two rods with orientations defined by the solid angles 
fl and fl', respectively, the mutual excluded volume V.(fl, fl') was defined as the volume of 
region into which the center of mass of one macromolecule could not penetrate due to the 
presence of the other macromolecule. Onsager showed that in order to study the semi-dilute 
regime one must include in the expression for the free energy of ideal solution a correction term 
containing V.(fl, fl'). Unlike the mean field theory, Onsager's theory is capable of describing 
the state of the system in terms of the concentration C of macromolecules. However, the 
temperature dependence of V.(fl, fl') is as yet unknown and Onsager's theory is therefore best 
suited for the study of systems at fixed temperature and varying concentration. 

Although in his study Onsager did not consider the effect of external fields, it is straight 
forward to generalize his results to include such effects. Neglecting a constant additive term, 
the generalized free energy of a test rod in the Onsager problem can be written as 

where, as before, ~(fl) is the orientational distribution function, &=~t(t'l) is the external potential 
field, and C is the number of rods per unit volume. ~k(fl) must minimize the above free energy. 

tTo be precise we must mention that the transition is, in fact, a feature of thermotropic liquid crystals. 
Polymeric solutions, in contrast, exhibit phase separation in a narrow region around (KT/a)= 0.22. This 
distinction has been ignored in our discussions. 
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Figure 4. Flow gradient dependence of the order parameter of a semi-dilute solution at different tem- 
peratures. (Note that at (KITa)= 0.24. where the solution is isotropic and only slightly above the critical 

temperature, the elongational flow is most effective.) 

The exact analytical solution of the Onsager problem does not exist; nevertheless, it has 
been solved numerically (Lasher 1970). There is a case, however, where a simplifying assump- 

tion reduces the problem to one that is readily solvable and yet the solutions maintain the 
general features of the more elaborate version. In the so called Zwanzig model (Zwanzig 1%3) 
the orientation of rods is confined to the three principal directions of space; namely, the rods 
can lie only along the X, Y and Z directions. Equation [4- I] for the Zwanzig model can be written as 
a function of the order parameter (P,) as follows: 

3FIKT = (2(P.,) + I)In (2(P,) + I) + 2(I - (P.,))In (I - (P,.)) - C( V~ - Vsl)(P,)" - 3((yIKT)(P,.) [4-21 

VI is the excluded volume when the rods are perpendicular to each other and VII is the 
excluded volume when the rods are parallel. 

Figure 5 shows plots of free energy vs (P:) for several values of C( V~ - V~I). These curves 
belong to the special case of (f, 'flKT)= O, the case of vanishing flow gradient. It is observed 
that 

(i) When C(V~ - VII) _< 8/3 the energy has a unique minimum at (P.,) = 0. 
(ii) When 8/3-< C(V~-V0_.< 2.7725... the free energy has two minima with (P:)= 0 cor- 

responding to the absolute minimum. 

(iii) When 2.7725... <_C(V.-Vll)<_3 the free energy has two minima with (P,.)v.O 
corresponding to the absolute minimum. 
The system therefore undergoes a phase transition in the neighborhood of the critical concen- 
tration where C ( V , - V b ) =  2.7725 . . . .  In a recent paper Doi (1981), after generalizing the 
diffusion equation to include the concentration dependence of the diffusion constant and the 
effect of intermolecular interaction potential arrived at similar results. In his paper the cor- 
responding values of the parameter U (which is defined to be proportional to concentration C) 
are 8/3, 2.7 and 3. 

The presence of flow gradient changes the above picture. Plots of free energy vs (P:) for 
(('rlKT) = 0.05 are shown in figure 6. Note that there is now but one minimum of free energy at 
each concentration and the occurrence of phase transition is therefore out of question. 
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Figure 5. Onsager's free energy vs order parameter in the Zwanzig m~lel. Curves for several concen- 
trations are shown. The macromolecular solution in this case is not flowing. 
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Figure 6. Onsager's free energy vs order parameter in the Zwanzig model. Curves for several concen- 
trations are shown, The macromolecular solution in this case is undergoing flow with (~,/KT) = 0.05. 
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Figure 7. Order parameter vs concentration at different flow gradients (Zwanzig model). If the flow is not 
too weak. the phase transition disappears. 

Figure 7 shows plots of order parameter vs concentration for several values of the flow 
gradient. It is not difficult to show that the value of ((T/KT) above which the transition 
disappears is (2/3)[In 2 -  (2/3)] = 0.0176 . . . . .  The curve for this limiting value of (~y]KT) is also 
shown in Figure 7. 

5. CONCLUDING REMARKS 
We have studied the behavior of rodlike macromolecules in solution in the presence of a 

uniaxial extensional flow field. Application of both the Maier-Saupe mean field theory and the 
theory of Onsager to the problem indicates that the nematic-isotropic phase transition disap- 
pears as the flow gradient reaches beyond a certain critical value. This is similar to the results 
of an earlier study in which Flory's methods had been applied. These results which are mere 
predictions at this stage now await experimental verification. 
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