
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Modeling diffractive optical elements
for optical data storage applications

Masud  Mansuripur

Masud  Mansuripur, "Modeling diffractive optical elements for optical data
storage applications," Proc. SPIE 6620, Optical Data Storage 2007, 66200N
(11 July 2007); doi: 10.1117/12.738645

Event: Optical Data Storage 2007, 2007, Portland, OR, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 25 Mar 2019  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

Modeling Diffractive Optical Elements for Optical Data Storage Applications 
Masud Mansuripur 

College of Optical Sciences, The University of Arizona, Tucson, Arizona 85721 
masud@optics.arizona.edu 

 
Abstract. A combination of ray-tracing and diffraction theory is used to model the diffractive optical elements used in 
optical data storage systems. Details of the theoretical model and some numerical simulation results are presented. 
 
1. Introduction. Optimal design of advanced optical pickups and media requires a thorough 
understanding of the interaction between the light beam and the various system components located 
between the laser and the detectors. In this paper we use a combination of polarization ray-tracing 
and quasi-vector diffraction modeling to analyze the behavior of the laser beam as it propagates 
through various Diffractive Optical Elements (DOEs). 
 
2. Transmissive Diffractive Optical Element. Figure 1(a) shows a geometric-optical ray (vacuum 
wavelength = λo) arriving through a medium of refractive index n1 at the surface of a substrate 
(refractive index = n2) coated with a variable thickness layer; the angle and the azimuth of incidence 
are θ1, φ1, those of the transmitted ray are θ2, φ2. The incident wavefront at the front facet of the 
substrate may be written as A(x, y) = Ao exp[i(2πn1/λo)(xσx + yσy)], where σx = sinθ1 cosφ1 and 
σy = sinθ1 sinφ1. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. (a) A ray of light (vacuum wavelength = λo) is incident at an oblique angle (θ1, φ1) from a medium of 
refractive index n1 onto a substrate of index n2. The substrate is coated with a layer of index n and variable thickness 
t (x, y), where n is assumed to be large and t(x, y) very small, so that only the optical path difference, 
OPD = (n − n1) t (x, y), has a finite value. (b) The variable thickness layer is converted to a DOE by reducing the coating 
layer’s thickness wherever the OPD contains an integer multiple of the construction wavelength λc. The characteristic 
function of the DOE is thus the fractional part f (x, y) of the characteristic function of the coating layer in (a), defined as 
F(x, y) = (n − n1) t (x, y)/λc. 
 
The coating layer has thickness t(x, y) and refractive index n. To avoid certain complications in the 
following analysis we shall assume that n is very large and t(x, y) very small, so that only the 
product (n − n1) t(x, y), known as the optical path difference (OPD), has a finite value. The 
characteristic function of the coating layer is thus the dimensionless function F(x, y) = 
(n − n1) t(x, y)/λc, where λc is some fixed “construction wavelength.” The characteristic function is 
generally specified by a polynomial such as 

n1 n2 

θ1 
θ2 

X 

ZY 

n 

t (x, y) 

θ1

θ2

X

Z Y

n1 n2

Optical Data Storage 2007, edited by Bernard Bell, Takeshi Shimano
Proc. of SPIE Vol. 6620, 66200N, (2007) · 0277-786X/07/$18 · doi: 10.1117/12.738645

Proc. of SPIE Vol. 6620  66200N-1

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 25 Mar 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

 
  F(x, y) = Σ      Σ amn xm yn. (1a) 
 
F(x, y) must be greater than or equal to zero across the surface since n − n1, t(x, y) and λc are all non-
negative. For later reference, the gradient of F(x, y) is written below: 
 

  ∇F(x, y) = (∂F/∂x, ∂F/∂y) = [Σ m ( Σ amn yn) xm −1,  Σ n ( Σ amn xm) y 
n −1]. (1b) 

 
A Diffractive Optical Element (DOE) is constructed from the above coating layer by reducing the 
layer’s thickness whenever F(x, y) happens to be greater than unity. By removing from t(x, y) all 
integer multiples of λc/(n − n1), one obtains a coating such as that in Fig. 1(b), for which the integer 
part of F(x, y), if any, has been eliminated in all locations. The characteristic function f (x, y) of the 
DOE, with values confined to the interval [0, 1], is simply the fractional part of F(x, y).  
 
 
 
 
 
 
 
Figure 2. Diagram of a DOE showing the slicing contours 
where the function F(x, y) assumes integer values. The DOE’s 
characteristic function f (x, y) is the fractional part of F(x, y). 
Thus, while F(x, y) is continuous across the X Y-plane, f (x, y) 
jumps by one unit at each contour. The space between each pair 
of adjacent contours contains a single groove of the DOE, where 
f (x, y) varies continuously between the values of 0 and 1. At an 
arbitrary location (xo, yo) in the X Y-plane, the separation 
between adjacent contours is given by (∆x, ∆ y) = ∇F/ |∇F |2, 
which is a vector of magnitude 1/ |∇F | oriented orthogonal to 
the contours.  
 
As shown in Fig. 2, the coating layer’s F(x, y) is truncated at contours where the function acquires 
integer values, so the local period (∆x, ∆y) of the DOE at a point such as (xo, yo) is the shortest line 
segment through (xo, yo) that satisfies the equation  
 
 ∇F(x, y) · (∆x x̂ + ∆y ŷ ) = (∂F/∂x) ∆x + (∂F /∂y) ∆y = 1. (2) 
 
In Eq. (2) x̂ and ŷ are unit vectors along the coordinate axes. Noting that |∇F | 2 = (∂F/∂x)2

 + 

(∂F/∂y)2, we find (∆x, ∆y) = ∇F/ |∇F |2. This is the local period of the grating at (xo, yo), which is 
directed along ∇F and has magnitude 1/ |∇F |. In the linear approximation, a single period of the 
grating begins at (x, y) = (xo, yo) − f (xo, yo)∇F/ |∇F |2, where f (x, y) = 0, and ends at (x, y) = (xo, yo) + 

[1 − f (xo, yo)] ∇F/ |∇F |2, where f (x, y) = 1.  
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Since n is assumed to be large, inside the coating layer of Fig. 1(a) the ray travels along the Z-axis 
and acquires an extra phase Ψ (x, y) = 2π(n − n1) t(x, y)/λo = 2π(λc/λo)F(x, y). As long as λo = λc, the 
truncation of F(x, y), i.e., removal of its integer part, does not affect the acquired phase 
shift Ψ (x, y); in other words, eliminating 2π multiples does not change the transmitted beam’s 
phase profile. However, when λo ≠ λc, the X Y-plane may be divided into segments, defined by the 
contours of truncation, where the phase of the transmitted beam over each segment differs from 
Ψ (x, y) by some integer-multiple of 2π(λc/λo); the DOE thus modulates the incident phase by 
ψ (x, y) = 2π(λc/λo) f (x, y). In the vicinity of an arbitrary point (xo, yo), considering the local 
periodicity of the grating along the direction ∇F, the modulating phase function exp[iψ (x, y)] may 
be expanded in the following (one-dimensional) Fourier series: 
 

 exp [i2π(λc/λo) f (x, y)] = Σ Cm exp{i2πm[(∂F/∂x) (x – xo) + (∂F/∂y) (y – yo)]},  (3a) 
 
where the Fourier coefficients are given by 
 
 Cm = |∇F | ∫ exp [i2π(λc/λo) f (x, y)] exp(−i2πm|∇F | s) ds.  (3b) 
 
In Eq.(3b), the one-dimensional integral is taken in the X Y-plane along a straight line segment 
drawn parallel to ∇F through (xo, yo); the range of integration, starting at (x, y) = 
(xo, yo) − f (xo, yo)∇F/ |∇F |2 and ending at (x, y) = (xo, yo) + [1 − f (xo, yo)] ∇F/ |∇F |2, covers one full 
period of the grating; see Fig. 2. Expanding f (x, y) to first order in Taylor series yields 
 
 f (x, y) = f (xo, yo) + (∂F/∂x) (x – xo) + (∂F/∂y) (y – yo). (4) 
 
Substituting for f (x, y) in Eq.(3b) from Eq.(4) and carrying out the integration, we find 
 
 Cm = exp[i2πmf (xo, yo)] exp{iπ[(λc/λo) – m]} sinc[(λc/λo) – m], (5) 
 
where sinc(x) = sin(πx)/πx. The mth order diffraction efficiency is thus found to have the constant 
amplitude |Cm| = sinc[(λc/λo) – m] across the X Y-plane for any given λo. When λo happens to be the 
same as the construction wavelength λc, the first order beam will have 100% efficiency while all 
other orders vanish. Also, if λc is an integer-multiple of λo, only one order will emerge, 
unattenuated, from the DOE. For all other values of λo, the various orders m = 0, ±1, ±2, etc., will 
coexist. The second term in Eq.(5) corresponds to a constant phase, π[(λc/λo) – m], which is 
independent of (xo, yo) and may thus be ignored in practice. The remaining phase, 2πmf (xo, yo), 
varies continuously across the X Y-plane with absolutely no dependence on λo. Since f (xo, yo) is the 
fractional part of F(xo, yo), the two functions may be exchanged and the phase acquired by the mth 
order rays written as 2πmF(xo, yo). In practice the lack of any discontinuous jumps in this phase 
profile of the mth order beam is extremely important, since it means that the wavefront associated 
with each and every diffraction order is well-behaved. In other words, if one assembles all the mth 
order rays from across the DOE to construct the mth order transmitted beam, the beam will have a 
continuous wavefront. 
 

m
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The transmitted wavefront around (xo, yo), the foot of the incident ray, can now be written 
 

 A(x, y) = Σ A′m exp[i (2πn2/λo) (xσ′x m + yσ′y m)] 

 = Ao exp[i (2πn1/λo) (xσx + yσy)] exp[iψ (x, y)]  

 = Σ Cm Ao exp{i (2π/λo) [(n1σx + mλo∂F/∂x) x + (n1σy + mλo∂F/∂y) y]}. (6) 
 
The (complex) amplitude and the direction of the mth order transmitted ray are thus given by 
 
  A′m = Cm Ao, (7a) 

 (σ′x , σ′y)m = (n1σx + mλo∂F/∂x, n1σy + mλo∂F/∂y) /n2. (7b) 
 
Note that the mismatch between the refractive indices n1, n, and n2 is not taken into consideration in 
Eq.(7a) as far as reflection losses at the various interfaces are concerned. Also ignored in this 
analysis are the effects of incident polarization on the transmission coefficient Cm, which would 
have required a rigorous vector diffraction treatment. 
 
For m ≠ 0, the direction of the mth order transmitted ray, (σ′x , σ′y)m, is seen from Eq.(7b) to depend 
on the illumination wavelength λo in a way that gives rise to a substantial amount of chromatic 
aberration; this provides the basis for correcting the chromatic aberrations of conventional refractive 
lenses by incorporating diffractive optical elements in the so-called hybrid designs. In going from 
medium 1 to medium 2 of Fig. 1, the undiffracted 0th order ray follows the Snell’s law since, 
according to Eq.(7b), (n2σ′xo, n2σ′yo) = (n1σx , n1σy). For other diffraction orders, one must add 
mλo∇F to the incident beam’s (n1σx , n1σy) in order to obtain the transmitted beam’s (n2σ′x, n2σ′y) m. 
 
Having exploited the localized ray picture to build the transmitted wavefront(s) across the DOE 
surface, we now abandon the rays and concentrate instead on the transmitted wavefronts (one for 
each diffracted order). When the incident wavelength λo differs from the construction wavelength 
λc, the various orders will be present in the mix in different amounts, with the magnitude of the mth 
beam, |Cm| , being a function of m and the wavelength ratio λc/λo. Although the phase profile of each 
diffracted order is independent of the incident wavelength λo, this does not imply that a given 
diffracted order behaves identically in response to different incident wavelengths. Remember that 
the mth order phase profile is exp[i2πmF(x, y)], so, for simplicity’s sake, let us assume that 
F(x, y) = αx + βy, where α and β are arbitrary constants. This phase profile may then be written as 
exp[i(2π/λ)(mλαx + mλβy)], where λ = λo/n2 is the wavelength within the medium of refractive 
index n2. This represents a plane wave having direction cosines (σx , σy) = (mλα, mλβ), whose 
propagation direction evidently depends on λo, even though its phase profile is independent of the 
incident wavelength. The bottom line is that the rays and the wavefronts that emerge from the above 
analysis paint a consistent picture, both leading to the same conclusions concerning the diffraction 
efficiency and the chromatic aberrations associated with each diffracted order of the transmitted 
beam. 
 

m

m
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3. Reflective Diffractive Optical Element. The arguments of the preceding section may be 
extended to cover the case of an ideal reflective DOE shown in Fig. 3. As before, the incidence 
medium has refractive index n1, but the DOE’s substrate is a perfect reflector. We assume once 
again that the variable-thickness layer has a large refractive index n and a correspondingly small 
thickness t(x, y). The optical path difference upon transmission through the layer and reflection at 
the substrate interface is thus given by OPD = 2(n − n1) t(x, y), which yields the characteristic 
function F(x, y) = 2(n − n1) t(x, y)/λc, with λc being the construction wavelength. Once again, the 
DOE is constructed from the above coating layer by reducing the layer’s thickness whenever 
F(x, y) exceeds unity. Note that the above factor of 2 in the expression for the OPD – representing 
the effect of double-path through the coating layer – does not affect any of the subsequent results, 
since the starting point of our derivations is the function F(x, y), which already incorporates this 
factor. The formal derivations for a reflective DOE parallel those of the transmissive DOE in the 
preceding section, until we reach Eq.(6), at which point the refractive index n2 of the medium into 
which the beam emerges (upon transmission through the DOE) must be replaced with n1, reflecting 
the fact that the incidence and emergence media are now the same. Therefore, for reflective DOEs, 
the only equation that needs to be modified is Eq.(7b), which assumes the following form: 
 
 (σ′x , σ′y) m = [σx + (mλo/n1) ∂F/∂x, σy + (mλo/n1) ∂F/∂y]. (8) 
 
All the considerations discussed in the case of transmissive DOEs apply equally to reflective 
elements as well. 
 
 
 
 
 
Figure 3. The case of a reflective DOE differs from that of a transmissive 
DOE in that the transparent substrate is now replaced with a perfect reflector. 
The incident rays, after traveling through the coating layer, bouncing back at 
the substrate interface, and returning through the same thickness of the coating 
layer, re-emerge into the incidence medium (refractive index = n1). The DOE 
is constructed from the coating layer by removing from t(x, y) all integer 
multiples of ½λ c /(n − n1). 
 
4. DOE on a curved surface. Curved surfaces may also be coated with DOEs, and the method of 
calculating reflected/transmitted rays is essentially the same as that described in conjunction with 
flat surfaces in the preceding sections. The reason is that all such calculations are based on the 
properties of the surface and of the incident and emergent rays over small patches, where curved 
surfaces are flat locally. The only complication arises from the fact that the DOE’s characteristic 
function is usually defined with respect to a coordinate system whose axes do not follow the profile 
of the surface. We limit the present discussion to the case of a curved surface of revolution, such as 
that in Fig. 4, where the axis of symmetry is z, and the sag is a given function h(r) of r. The 
characteristic function of such a DOE is usually defined by a radial polynomial, 
 

  F(r) = Σ   an r 
n. (9) 
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Consider the local surface coordinate s shown in Fig. 4. The value of s at each point on the surface 
is the length of the curve measured from some point of reference such as the vertex at (r, z) = (0, 0).  
What we need is the characteristic function’s gradient over a short distance ∆s, namely, ∆F/∆s. But 
 
 ∆s = √ (∆r)2 + (∆h)2 = ∆r √ 1 + (dh/dr)2 . (10) 
 
Therefore, 
 ∂F/∂s = (∂F/∂r)/√ 1 + (dh/dr)2 (11) 
 
Equation (11), in conjunction with the equations derived 
previously for flat surfaces, is all that one needs in order 
to compute the various diffracted rays and wavefronts 
associated with DOEs on curved substrates. 
 
 
 
 
 
 
Figure 4. A surface of revolution around the z-axis is defined by its 
sag h (r), which is the distance of the surface (along z) from the 
plane tangent to the surface at its vertex. The curvilinear coordinate 
s follows the tangent to the surface in the r z-plane. The value of s at 
each point is the length of the curve measured from some point of 
reference, such as the vertex at (r, z) = (0, 0). Also shown is a pair of 
incident and refracted rays at the surface.  
 
5. Transmissive DOE sandwiched between a pair of flat substrates. Figure 5 shows an aspheric 
lens illuminated with a Gaussian beam (λo = 0.66µm, e−1 radius Ro = 2.5mm, diameter D = 4.0mm). 
The emerging convergent beam passes through a glass plate on its way to a flat DOE sandwiched 
between a substrate and a cover slip. The DOE’s construction wavelength λc is the same as λo 
(hence the emergent beam is the +1st diffracted order), and its phase profile is given by 
(x and y in millimeters): 
 

F (x, y) = 639.77x + 17.47x2
 – 19.76 y2

 – 30.18 x3 – 0.0042 x2y – 33.69 xy2 + 0.0021 y3
 – 3.25 x4. 

 
The incident rays are traced through the entire system, then back traced to the so-called destination 
plane, located at z = 10 mm from the first vertex of the lens and tilted by θ = 6.03°, as shown. At the 
destination plane, the magnitude, phase, and polarization state of the rays are used to reconstruct the 
wavefront. Figure 6 shows the reconstructed wavefront’s intensity and phase distribution at the 
destination plane. The wavefront’s curvature and tilt are factored out, otherwise the phase variations 
across the cross-sectional profiles will be too great to display. Note that the y-component is nearly 
four orders-of-magnitude weaker than the x-component, whereas the z-component’s power content 
is non-negligible. The phase profiles of Fig. 6 are quite uniform, corresponding to a small residual 
aberration with an r.m.s. wavefront error ≈ 0.003λo. 
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Figure 7 shows plots of log_intensity, intensity, and phase in the plane of best focus for the x-, y-, 
and z-components of polarization. Note that the y-component is nearly four orders-of-magnitude 
weaker than the x-component, whereas the z-component is fairly strong. The observed linear phase 
profile is due to the 6.03° tilt of the focal plane relative to the incident beam coordinates (see the 
focal plane coordinates in Fig. 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Gaussian beam (λo = 0.66µm, e−1 radius Ro = 2.5mm, diameter D = 4.0mm) is focused by a 4.0mm diameter 
lens (thickness = 1.7 mm, refractive index = 1.54044, first surface: radius of curvature Rc = 11.4 mm, conic constant 
κ = −0.733, aspheric coefficients A 4 = 2.82 × 10−7, A 6 = −3.75 × 10−8, A 8 = −1.5 × 10−9; second surface: Rc = −98 mm). 
The incident beam, linearly polarized along the x-axis, has the intensity profile shown on the left-hand side. The glass 
plate (d1 = 0.61 mm), the cover slip (d2 = 0.5mm), and the substrate (d3 = 2.0 mm) all have the same refractive index 
n = 1.520168. The glass plate is 1.0 mm away from the lens and 14.38 mm away from the cover slip. The destination 
plane is at z = 10.0 mm (measured from the first vertex of the lens), and is tilted by θ = 6.03°, as shown. The beam is 
subsequently propagated a distance of 10.468 mm along the normal to the destination plane, which brings the beam to 
its plane of best focus. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Distributions of intensity (top) and phase (bottom) at the Destination plane in the system of Fig. 5; from left 
to right, x-, y-, and z-components of polarization. Note that the emergent beam is centered at x = −3.6 mm. The peak 
intensities are in the ratio of Ix : Iy : Iz = 1.0 : 0.39 × 10−3 : 0.13. In the residual phase profiles φx, φy, φz, where the 
wavefront curvature and tilt are factored out, the color spectrum in each plot covers the range from minimum (blue) to 
maximum (red); here (φmin : φmax) is (0° : 39°) for φx, (−147° : 39°) for φy, and (−146° : 0°) for φz. 
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Figure 7. Plots of log_intensity (top), intensity (middle), 
and phase (bottom) at the plane of best focus in the system 
of Fig. 5. From left to right: x-, y-, and z-components of 
polarization. The peak intensities are in the ratio of 
Ix : Iy : Iz = 1.0 : 0.15 × 10−3 : 0.115. The phase profiles’ 
range (blue to red) is (φmin : φmax) = (−180° : 180°). 
 
 
 
6. Reflective DOE on flat substrate. Figure 8 shows a flat DOE on the rear facet of a glass prism, 
illuminated by a Gaussian beam (λo = 0.65µm, e−1 radius Ro = 2.0mm, diameter D = 3.0mm, 
linearly polarized along x). The only emergent beam is the +1st diffracted order, as the DOE’s 
construction wavelength λc is the same as λo. The DOE’s aperture diameter is 5.0mm, and its phase 
profile within its own plane is F (x, y) = 3.0(x2 + y2 ); here both x and y are in millimeters.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. A linearly polarized Gaussian beam enters a glass prism of refractive index n = 1.65 whose rear facet is 
coated with a DOE. The incident beam’s intensity profile is shown on the left-hand side. The emergent diffracted beam 
is the +1st order. The entrance and exit facets of the prism are antireflection-coated, and the Destination Plane is a 
distance ∆y = 10mm below the prism’s exit facet. 
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Figure 9 shows the reflected intensity and phase 
profiles at the destination plane. These plots 
depict intensity (top), phase (middle), and 
phase_minus_curvature (bottom), with the x, y, 
z-components of polarization shown from left to 
right. Note that the y- and z-components are 
several orders-of-magnitude weaker than the x-
component. The DOE’s 45° tilt produces the 
astigmatism seen in the phase plots. 
 
 
 
Figure 9. Plots of intensity (top), phase (middle), and 
phase_minus_curvature (bottom) at the destination plane 
of the system of Fig. 8. From left to right: x-, y-, and z-
components of polarization. The peak intensities are in 
the ratio of Ix :Iy :Iz = 105:0.4:1.08. The range of the phase 
profiles (blue to red) is (φmin : φmax) = (−180° : 180°). 
 
 
 
7. Transmissive DOE on an aspheric glass lens. Figure 10 shows a DOE-coated aspheric lens 
illuminated with a Gaussian beam (λo = 0.78µm, e−1 radius Ro = 2.0 mm, diameter D = 3.0 mm, 
linearly polarized along x). The DOE’s phase profile is F(r)=4.2r2–2.5r4+0.25r6 (r in mm), and its 
construction wavelength λc is the same as λo; hence the emergent beam is the +1st diffracted order. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. A linearly polarized Gaussian beam is focused via a DOE-coated bi-aspheric lens through a glass cover slip 
(d = 1.2 mm, n = 1.573456), which is separated from the lens by 1.0 mm. The incident beam’s intensity profile is shown 
on the left-hand side. The 3 mm diameter lens has thickness = 1.8256 mm, refractive index = 1.597075, first surface 
parameters: radius of curvature Rc = 1.93 mm, conic constant κ = −0.655844, aspheric coefficients A 4 = 2.833 × 10−3, 
A 6 = −4.389 × 10−5, A 8 = 1.524 × 10−4; A10 = −1.177 × 10−4; and second surface parameters: Rc = −6.744 mm, 
κ = −31.754, A4 = −7.358 × 10−3, A 6 = 2.5077 × 10−3, A 8 = 1.106 × 10−3; A10 = −3.871 × 10−4. The destination plane is at 
the exit pupil of the aspheric singlet, and the beam is subsequently propagated to the focal plane. 
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The incident rays are first traced through the entire system, then back traced to the destination plane 
located at the exit pupil of the objective lens; the emergent wavefront is subsequently reconstructed 
from the traced rays. Figure 11 shows plots of intensity and phase at the destination plane. Shown 
from left to right are the x-, y-, and z-components of polarization. The curvature of the wavefront has 
been factored out, so what is displayed is the residual phase or aberrations. Note that the y-
component is nearly three orders-of-magnitude weaker than the x-component, but the z-component 
is not so weak. The wavefront at the exit pupil is then propagated to the focal plane and shown in 
Fig. 12, where the y-component of polarization is seen to be more than three orders-of-magnitude 
weaker than the x-component. 
 
 
 
 
 
 
 
 
 
 
Figure 11. Plots of intensity (top) and phase (bottom) at 
the exit pupil of the aspheric lens in the system of 
Fig. 10. From left to right: x-, y-, and z-components of 
polarization. The peak intensities are in the ratio of 
Ix : Iy : Iz = 1000 : 0.6 : 70. The range of the phase profiles 
(blue to red) is (φmin : φmax) = (−180° : 180°). 
 
 
 
 
 
 
 
 
 
Figure 12. Intensity distribution at the focal plane of the 
lens in the system of Fig. 10; (left) x-component, (right) y-
component of polarization. The peak intensities are in the 
ratio Ix : Iy = 1000 : 0.27.  
 
 
 
 
 
8. Reflective DOE on a parabolic mirror. Figure 13 shows the diagram of a DOE-coated 
parabolic mirror illuminated with a Gaussian beam (λo = 0.65µm, e−1 radius Ro = 2.0mm, diameter 
D = 3.0mm, linearly polarized along the x-axis). The paraboloid has radius of curvature Rc = 40mm, 
conic constant κ = −1, and aperture diameter D = 3.0mm; the DOE’s phase profile is given by 
F2(r) = r2 – 1.25r4 + 0.35r6 + 0.1r8 (r in millimeters). Since the DOE’s construction wavelength is 
λc = 0.55µm, various diffracted orders exist, although the most intense beam, shown in Fig. 14, is 
the +1st order. Figure 14 shows the reflected intensity and phase profiles at the destination plane, 
located 10.0 mm away from the mirror’s vertex; this also happens to be 10.0 mm before the mirror’s 
nominal focal plane. From left to right, these plots represent the x-, y-, and z-components of 
polarization. Note that the y-component is nearly six orders-of-magnitude weaker than the x-
component, whereas the z-component is only ~600 times weaker. 
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Figure 13. A Gaussian beam is reflected from a DOE-coated parabolic mirror. The incident beam, linearly polarized 
along the x-axis, has the intensity profile shown on the left-hand side. Since the DOE’s construction wavelength λc is 
0.55µm, various diffracted orders exist, although the most intense beam, shown in Fig. 14, is the +1st order. The 
destination plane is a distance ∆z = 10.0 mm from the vertex of the paraboloid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Plots of intensity (top) and phase (bottom) at the destination plane of the system of Fig. 13. From left to 
right: x-, y-, and z-components of polarization. The peak intensities are in the ratio of Ix : Iy : Iz = 
1.0 : 0.33 × 10−6 : 0.177 × 10−2. The range of the phase profiles (blue to red) is (φmin : φmax) = (−180° : 180°). For display 
purposes the curvature phase factor has been taken out of the mesh. 
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