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DEMAGNETIZING FIELD COMPUTATION FOR DYNAMIC
SIMULATION OF THE MAGNETIZATION REVERSAL PROCESS
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ABSTRACT
The magnetic field distribution for a thin magnetic film is com-
puted using the fast Fourier transform technique. The method
is quite general and accommodates any 2-dimensional magne-
tization distribution. It allows the computation of fields both
inside the film (demagnetizing fields) and outside (stray fields
and leakage).

Introduction

Computer simulation of magnetization dynamics in thin films
is a valuable tool in the analysis of magnetic, bubble, and magneto-
optic storage devices. With the advent of powerful computers in
recent years, there has been a flurry of activity in micromag-
netics research based on computer simulations of the Landau-
Lifshitz-Gilbert equation [1]-[4]. The computation-intensive part
of these simulations turns out to be the calculation of demagne-
tizing forces which are rooted in long range dipole-dipole interac-
tions. Truncating the interaction range is not admissible in three-
dimensional problems and in two dimensions serious inaccuracies
may result unless the truncated terms are sufficiently far away.
Another problem is the inherent inaccuracy of straight-forward
discretization: Replacing the magnetization within a unit cell of
the Jattice with a single dipole at the center of the cell does not
always give the correct demagnetizing field [5].

It turns out that two-dimensional problems can be accurately
and efficiently treated by the Fourier transform technique. In ad-
dition to calculating the demagnetizing fields within the film, this
technique also allows the computation of magnetic fields outside
the film. Thus, it can be applied to problems in other areas such
as magnetic force microscopy (6] and simulation of readout from
magnetic disk and tape. Energy considerations in the Fourier
domain lead to significant insights as well as simplifications in
certain micromagnetic problems. In this paper we outline the
Fourier transform approach to magnetic field computation and
present some preliminary results. More detailed computations
and the results of dynamic simulations using the fast Fourier
transform algorithm will be published elsewhere.

The Field of a Long, Thin, Uniformly Magnetized Strip

Consider an infinitely long strip of height A and differential
width dz located on the Y axis, as shown in Fig. 1. The strip has
uniform magnetization M=Mz+ M,y + M.2 and its field B
is to be calculated at an arbitrary point (z,¥,2) in space. From
symmetry it is clear that H has no component in the ¥ direction
and that the magnitudes of H, and H, are independent of the
y coordinate of the observation point. One also observes that
M, does not contribute any field since the net magnetic charges
created by M, are finite in magnitude and located at infinity.
The differential scalar potential d¢(z,y,z) due to the uniform
charge distributions on the four surfaces of the strip is calculated
as follows:
dp(z,y,2)= X .

[2M37 (arct.an %i — arctan z—;i) + M, In (iﬂﬁ—ﬂ—ﬂ dz (1)

z2+(z-%)2

Now, consider a film of thickness h, centered at Z = 0 in the
XY plane. Let the magnetization have a fixed direction in space
with sinusoidal amplitude modulation along the X axis, namely,

M(m,y,z) = Myexp(i2n fz) s (2)

where —00 < ¢ < o0, —oo<y<oo,and—'2—‘§z§§. Also
assume that the spatial frequency f is greater than or equal to
zero. The potential distribution will then be the convolution of
the two functions in Eq.(1) and Eq.(2) and is given by:

(15(1:,:!],1) =
—4mi (M, — iM,n)ﬂ'z',(,’;—"‘Q exp(21rfz)] exp(i2nfz); 2<%
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The next step is to generalize the sinusoidal distribution o)f
Eq.(2). Instead of running along the X axis, we let the sinu-
soid run along the arbitrary direction & = (fz/f)% + (f,/1)3.
Here 2 and ¢ are unit vectors along the X and Y axes, f, and
f, are components of the spatial frequency, and f = ,/fZ + f2
is the magnitude of the spatial frequency. The magnetization
distribution is now given by

Jt_i(m, y,z) = MO exP[i27r(fzz + fyy)] (4)

The potential distribution can be obtained from Eq.(3) with the
following modifications:

i) Replace M., with the component of M, along &, that is,
LM, + 20,
ii) Replace exp(i2x fz) with exp[i2n(foz + fyy)l-

Having found the potential distzribution we obtain the mag-
netic field from the relationship H = —V¢. Using the notation
6y =124 ’—;’—ﬁ +1% where &,7, z are Cartesian unit vectors and

!
1= +/—1, we find
ﬁ($1 y,z) = .
—Ar [exp(erz)sinh(ﬂ'hf)(Mo . 6'_)&,] exp [i2n(foz + fuy)];

z < —%
+m [Fexp(2nf(z — }))(Mo - 6-)6— + fexpl—2mf(z+ 3)]
(Wo - 84)64 — (Mo - 5)6] exp i2n(foz + )i 121 <5

—4r [exp(—27rfz)sinh(7rhf)(}\—fg . &+)&+] exp [i2n(fox + fu9))5.
2> 5 (5)

Figure 1: A long, thin strip of uniformly magnetized material.
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In applications were the average field through the film thick-
ness is desired, Eq.(5) yields:

3= inh(wh
%/_; H(z,y,z)dz = 4r {cxp(—whf)“—_’%

x [1(1120 )+ %(Mo - a+)&+]

ﬁavg(z7 y) =

~(Ho - 8)6 } explizn(fuz + f9) (®)
A comparison of the average field with the field at the center of
the film (obtained from Eq.(5) by setting z = 0) reveals the factor
——(# in Eq.(6) as the only difference between the two expres-
sions. The average field therefore has a stronger perpendicular
component and a weaker in-plane component when compared to
the field at the film center.

Field Calculation Using Fourier Transform

Consider a film of dimensions L., L, and k where in the XY Z
coordinate system 0 < 2 < L.; 0 < y < Ly; —% <z < 2
Let M(z,y) be the magnetization of the film (uniform in the Z
direction) and assume that periodic boundary conditions apply,
namely, the XY plane is covered with identical L x L, tiles. The

Fourier coefficients of the periodic function M (z,y) are given by

—

I ; /L' M(z,y) exp{—m(—+"”)wzdy (7)

mn

L L
In Eq.(7) the z,y, and z components of M are transformed sep-
arately. Now, the Fourier series representation of M(z,y) is:

M(z,y) = Z E anexpllzﬂ(-—+L ] (8

m=-00n=—00

The field for each Fourier component of M (=,y) is given in
Eq.(5). (If the average field through the film thickness is de-
sired one should use Eq.(6) instead.) Replacing f, by m/L., fy

by n/L, and M, by M., one obtains the Fourier coefficients
I:_I‘,,m of the field at constant z. The magnetic field distribution

is then obtained by inverse Fourier transformation, namely,
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Z }: H,,m(z) exp

m=—00 n=—00

H(z,y,2) [m(_ + ”y)J (9)

It is thus possible to obtain the average field or the field in a
plane of constant z by a pair of Fourier transforms and some
spatial filtering.

Energy Considerations

The magnetostatic energy density of the film discussed in the
preceding section is

1 Ly (Le . .
E:———//M,-,v,dd 1
M= Tk Jo MY He(2,y)dzdy  (10)
Using Parseval’s theorem, Ejs can be written in terms of the
Fourier coefficients of M and H,,g, as follows:

o0 oo

Bu==y % Y M lm=n ¥ 3

N=—00 M=—00 00 m=—00

{ exa(=rh)

sinh(mhf) (11)
whf
Another consequence of Parseval’s theorem is the following

relation between the average and the Fourier components of mag-
netization:

(1Mo - 217 = Mo - 61] + | My - &iz}

Ly (Ls
< M?

M- M*dedy = Z Z | M|

n=—00 M=—-00
(12)
These equations allow the study of domain wall energles as re-
lated to the wall structure. We will discuss these issues in a
separate publication.
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Results and Discussion

Figure 2(a) shows the magnetization distribution for a reverse-
magnetized circular domain in a perpendiculary magnetized
medium. At each point on this discrete lattice of 32 x 32 the
perpendicular component of magnetization is represented by an
arrow while the appendage to the arrow shows the in-plane com-
ponent. In units of the lattice constant, the domain has radius
Ry = 8 and wall thickness parameter Aw = 3. The in-plane
components of the wall have all been chosen to point in the same
direction. (Although not the lowest energy state, this particular
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Figure 2(a): Magnetization distribution
in a perpendicular film with a circular re-
verse domain. In units of the lattice con-
stant the radius is By = 8 and the wall
thickness parameter is Aw = 3.

Figure 2(b): Thickness-averaged demag-
netizing field for the magnetization distri-
bution of Fig.2(a). In units of the lattice
constant the film thickness is A = 10.

Figure 2(c): Magnetic field distribution
outside the film of Fig.2(a) with A = 50 at
z = 26.
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Figur‘e 3(a): In-plane magnetization dis- Figure 3(b): Thickness-averaged demag- Figure 3(c): Magnetic field distribution
tribution with a pair of head-to-head walls. netizing field for the magnetization distri- outside the film of Fig.3(a) with h = 10 at

bution of Fig.3(a) with & = 10. 2 =86.
choice exhibits some interesting features in its magnetic field dis- [4] M. Mansuripur, “Magnetization Reversal Dynamics in the
tribution.) Figure 2(b) shows the thickness-averaged field Haug; Media of Magneto-optical Recording”, J. Appl. Phys., 63,
for this calculation the thickness h was 10 lattice constants. No- 5809-5823 (1988).

tice the diminished magnitude of the demagnetizing field within

the domain itself. At the same time, the charged walls on the ! ) X ; .
right and the left give rise to strong in-plane fields while the con- tion Fields for Three-dimensional Array of Ferromagnetic

tributions of the Bloch wall sections (above and below) to the Cubes”, IEEE Trans. Magn., 23, 3882-3888 (1987).
field are insignificant. Figure 2(c) shows the field distribution [6] J.J. Sanez, and N. Garcia, “Obscrvation of Magnetic Forces
outside the film. Here the film thickness is 50 and the field is b.;l ihe Atomic Force Mic'r,oscope” 3. Appl. Phys., 62, 4203-
calculated at a distance of one lattice constant above the film 4295 (1987). ’ -
(z = 26). Notice the slight asymmetry between the right and left
halves of the picture in the area near the domain wall. This is due
to the fact that the in-plane components of wall magnetization
were chosen along the positive X axis, thereby creating asym-
metry between the right and left half-domains. This asymmetry
becomes even more pronounced for smaller film thicknesses.
Another example of demagnetizing field calculations using
fast Fourier transforms is given in Fig.3. Figure 3(a) shows the
in-plane magnetization distribution for a film that contains two
head-to-head walls. The average demagnetizing field H,,, for a
film thickness h = 10 is shown in Fig.3(b). The field outside the
film at z = 6 is shown in Fig.3(c). The noteworthy feature of
these results is that the field inside a head-to-head wall is very
small while the demagnetizing energy is, of course, very large.
These preliminary results have shown that the computation of
demagnetizing fields using fast Fourier transforms is far more ac-
curate and efficient than the direct method of calculating dipole-
dipole interactions. We are now in the process of incorporating
this technique into our dynamic simulations and will report on
the results in the near future.

[5] M.E. Schabes and A. Aharoni, “Magnelostatic Interac-
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