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DEMAGNETIZING FIELD COMPUTATION FOR DYNAMIC 
SIMULATION OF THE MAGNETIZATION REVERSAL PROCESS 

M. Mansuripur and R. Giles, Boston University, Boston, Massachusetts 02215 

ABSTRACT 
The magnetic field distribution for a thin magnetic film is com- 
puted using the fast Fourier transform technique. The method 
is quite general and accommodates any 2-dimensional magne- 
tization distribution. It allows the computation of fields both 
inside the film (demagnetizing fields) and outside (stray fields 
and leakage). 

Introduction 
Computer simulation of magnetization dynamics in thin films 

is a valuable tool in the analysis of magnetic, bubble, and magneto- 
optic storage devices. With the advent of powerful computers in 
recent years, there has been a flurry of activity in micromag- 
netics research based on computer simulations of the Landau- 
Lifshitz-Gilbert equation [1]-[4]. The computation-intensive part 
of these simulations turns out to be the calculation of demagne- 
tizing forces which are rooted in long range dipole-dipole interac- 
tions. Truncating the interaction range is not admissible in three- 
dimensional problems and in two dimensions serious inaccuracies 
may result unless the truncated terms are sufficiently far away. 
Another problem is the inherent inaccuracy of straight-forward 
discretization: Replacing the magnetization within a unit cell of 
the lattice with a single dipole at the center of the cell does not 
always give the correct demagnetizing field [5].  

It turns out that two-dimensional problems can be accurately 
and efficiently treated by the Fourier transform technique. In ad- 
dition to calculating the demagnetizing fields within the film, this 
technique also allows the computation of magnetic fields outside 
the film. Thus, it can be applied to problems in other areas such 
as magnetic force microscopy [6 ]  and simulation of readout from 
magnetic disk and tape. Energy considerations in the Fourier 
domain lead to significant insights as well as simplifications in 
certain micromagnetic problems. In this paper we outline the 
Fourier transform approach to magnetic field computation and 
present some preliminary results. More detailed computations 
and the results of dynamic simulations using the fast Fourier 
transform algorithm will be published elsewhere. 

The Field of a Long, Thin, Uniformly Magnetized Strip 
Consider an infinitely long strip of height h and differential 

width dz located on the axis, as shown in Fig. 1. The strip has 
uniform magnetization M = M,i: + M,y + M,i and its field 
is to be calculated at an arbitrary point ( z ,y , z )  in space. From 
symmetry i t  is clear that I? has no component in the Y direction 
and that the magnitudes of H,  and H,  are independent of the 
y coordinate of the observation point. One also observes that 
My does not contribute any field since the net magnetic charges 
created by My are finite in magnitude and located at  infinity. 
The differential scalar potential d$(z,y, z )  due to the uniform 
charge distributions on the four surfaces of the strip is calculated 
as follows: 

Now, consider a film of thickness h, centered at 2 = 0 in the 
XY plane. Let the magnetization have a fixed direction in space 
with sinusoidal amplitude modulation along the X axis, namely, 

G ( z , y ,  z )  = Go exp(i2sfz) (2) 

where -m < x < m, -co < y < co, and -$  5 z 5 $. Also 
assume that the spatial frequency f is greater than or equal to 
zero. The potential distribution will then be the convolution of 
the two functions in Eq.(l) and Eq.(2) and is given by: 

+ ( Z , Y , Z )  = 

-4ai (M,, - i ~ , , ) v e x p ( ~ n f z ) ]  exp(i2nfx); z 5 -a 
(21 I ; 

-4ni [(M,, + i ~ , ~ ) v  exp(-~xfz)]  exp(i2nfz); z 2 5 
(3) 

-4ni - f (  Mz0 - iMzo)  exp[2*f  2 X f  ('- - 1 (M,, + iMzo)  t 
e x p [ - 2 * f ( r +  "1 

x 2*f + &KO] exp(i2afz); 

The next step is to generalize the sinusoidal distribution of 
Eq.(2). Instead of running along the X axis, we let the sinu- 
soid run along the arbitrary direction 5 = (f,/f)2 + ( f y / f ) $ .  
Here i: and 2 are unit vectors along the X and Y axes, f, and 
fy are components of the spatial frequency, and f = ,/m 
is the magnitude of the spatial frequency. The magnetization 
distribution is now given by 

i?(x,y,z) = &exp[i2~(f,a: + fYy)I (4) 

The potential distribution can be obtained from Eq.(3) with the 
following modifications: - 

i) Replace Mx0 with the component of Mo along c?, that is, 
+KO + $Myo 

ii) Replace exp(i2nfz) with exp[i2a(f,z + fyy)]. 

Having found the potential distributen we obtain the mag- 
netic field from the relationship = -V$. Using the notation 
&* = $2 + $y z t  ii where S , i ,  i are Cartesian unit vectors and 
i = G, we find 

I+, Y, z)  = 
-4n [exp(znfz).inh(nhf)(GO . &-I&-] exp [i27r(fzz + fyy)l ; 

+4n [+exp[2nf(z - k)~(i?o. &-I&- + f exp[-znf(z + $11 

( $ 0 .  ++)&+ - (A&, . +)&I exp [i2x(f,a: + fyy)l i 

z < - ;  

121 < t 

J 
X 

Figure 1: A long, thin strip of uniformly magnetized material. 
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In applications were the average field through the film thick- 
ness is desired, Eq.(5) yields: 

- (GO. & ) I + }  exp[i2a(fzz + fyy)] (6) 

A comparison of the average field with the field at the center of 
the film (obtained from Eq.(5) by setting t = 0) reveals the factor 9 in Eq.(6) as the only difference between the two expres- 
sions. The average field therefore has a stronger perpendicular 
component and a weaker in-plane component when compared to 
the field at the film center. 

Field Calculat ion Using Fourier  Transform 

Consider a film of dimensions L,, L, and h where in the X Y Z  
coordinate system 0 5 z 5 L,; 0 5 y 5 L,; -; 5 z 5 $. 
Let $(z,y) be the magnetization of the film (uniform in the 2 
direction) and assume that periodic boundary conditions apply, 
namely, the X Y  plane is covered with identical L, x L,  tiles. The 
Fourier coefficients of the periodic function G(z,y)  are given by 

In Eq.(7) the z ,y ,  and z components of IC? are transformed sep- 
arately. Now, the Fourier series representation of A?(x,y) is: 

The field for each Fourier component of G ( z , y )  is given in 
Eq.(5). (If the average field through the film thickness is de- 
sired one should use Eq.(6) instead.) Replacing f2 by m/L,, fy 

b,y n/L ,  and Go by Gmnl one obtains the Fourier coefficients 
Hmn of the field a t  constant z. The magnetic field distribution 

is then obtained by inverse Fourier transformation, namely, 

It is thus possible to  obtain the average field or the field in a 
plane of constant t by a pair of Fourier transforms and some 
spatial filtering. 

Ene rgy  Considerat ions 

The magnetostatic energy density of the film discussed in the 
preceding section is 

Using Parseval’s theorem, EM can be written in terms of the 
Fourier coefficients of n? and as follows: 

Another consequence of Parseval’s theorem is the following 
relation between the average and the Fourier components of mag- 
netization: 

(12) 
These equations allow the study of domain wall energies as re- 
lated to  the wall structure. We will discuss these issues in a 
separate publication. 

Resu l t s  a n d  Discussion 
Figure 2(a) shows the magnetization distribution for a reverse- 

magnetized circular domain in a perpendiculary magnetized 
medium. At each point on this discrete lattice of 32 x 32 the 
perpendicular component of magnetization is represented by an 
arrow while the appendage to the arrow shows the in-plane com- 
ponent. In units of the lattice constant, the domain has radius 
Ro = 8 and wall thickness parameter Aw = 3. The in-plane 
components of the wall have all been chosen to point in the same 
direction. (Although not the lowest energy state, this particular 

Figure 2(a): Magnetization distribution Figure 2(b): Thickness-averaged demag- ~i~~~~ 2(,.):  ti^ field distribution 
in a perpendicular film with a circular re- netizing field for the magnetization distri- outside the film of ~ i ~ . 2 ( ~ )  with h = 50 at 
verse domain. In units of the lattice con- bution of Fig.2(a). In units of the lattice 
stant the radius is RD = 8 and the wall constant the film thickness is .h = 10. 
thickness parameter is Arv = 3. 

= 26. 
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Figure 3(a): In-plane magnetization dis- 
tribution with a pair of head-to-head walls. 

Figure 3(b): Thickness-averaged demag- 
netizing field for the magnetization distri- 
bution of Fig.3(a) with h = 10. 

Figure 3 ( c ) :  Magnetic field distribution 
outside the film of Fig.3(a) with h = 10 at 
z = 6. 

choice exhibits some interesting features in its magnetic field-dis- 
tribution.) Figure 2(b) shows the thickness-averaged field Ha,,; 
for this calculation the thickness h was 10 lattice constants. No- 
tice the diminished magnitude of the demagnetizing field within 
the domain itself. At the same time, the charged walls on the 
right and the left give rise to strong in-plane fields while the con- 
tributions of the Bloch wall sections (above and below) to the 
field are insignificant. Figure 2(c) shows the field distribution 
outside the film. Here the film thickness is 50 and the field is 
calculated at a distance of one lattice constant above the film 
( z  = 26). Notice the slight asymmetry between the right and left 
halves of the picturein the area near the domain wall. This is due 
to the fact that the in-plane components of wall magnetization 
were chosen along the positive X axis, thereby creating asym- 
metry between the right and left half-domains. This asymmetry 
becomes even more pronounced for smaller film thicknesses. 

Another example of demagnetizing field calculations using 
fast Fourier transforms is given in Fig.3. Figure 3(a) shows the 
in-plane magnetization distribution for a film that contains two 
head-to-head walls. The average demagnetizing field Havg for a 
film thickness h = 10 is shown in Fig.J(b). The field outside the 
film at z = 6 is shown in Fig.3(c). The noteworthy feature of 
these results is that the field inside a head-to-head wall is very 
small while the demagnetizing energy is, of course, very large. 

These preliminary results have shown that the computation of 
demagnetizing fields using fast Fourier transforms is far more ac- 
curate and efficient than the direct method of calculating dipole- 
dipole interactions. We are now in the process of incorporating 
this technique into our dynamic simulations and will report on 
the results in the near future. 
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