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Abstract. In a recent paper we explored the novel reflection properties of several conical optical elements using 
numerical simulations based on Maxwell’s equations. For example, in the case of a hollow metallic cone having 
an apex angle of 90º, a circularly-polarized incident beam acquires, upon reflection, the opposite spin angular 
momentum in addition to an orbital angular momentum twice as large as the spin, whereas a 90º cone made of a 
transparent material in which the incident light suffers two total internal reflections before returning, may be 
designed to endow the retro-reflected beam with different mixtures of orbital and spin angular momenta. In the 
present paper we introduce an approximate analysis based on the Jones calculus to elucidate the physics 
underlying the reflection properties, and we point to the strengths and weaknesses of the approach. 

1. Introduction. It is now well established that electromagnetic (EM) waves carry energy, linear momentum, and 
angular momentum (AM), and it turns out that two apparently different properties of EM waves can give rise to angular 
momentum: Circular polarization is one source of AM, which is usually referred to as the spin angular momentum 
(SAM). The other source is associated with spiral phase variations around a given axis, and known as the orbital angular 
momentum (OAM) [1-6]. The two types of AM are interchangeable, in the sense that a light beam can be made to 
interact with one or more optical elements in such a way that its SAM and OAM content (each as a fraction of the 
beam’s total AM) will change as a result of interaction with the optical element(s). For example, a circularly-polarized 
Gaussian beam, which contains SAM only, may be sharply focused through a high-numerical-aperture lens, producing a 
focused spot that contains both SAM and OAM [7-9]. Alternatively, a circularly-polarized Gaussian beam may be sent 
through a specially-designed birefringent medium known as a “tuned q-plate,” producing, upon transmission, a reversal 
of the sense of circular polarization in addition to an optical vortex of topological charge 2q, with q being an arbitrary 
integer [10]. While some of these processes may involve a net exchange of AM between the light beam and the optical 
element that is the catalyst for interconversion (e.g., a q-plate with q ≠ 1), others will preserve the total AM of the light 
beam while converting a significant fraction of its SAM to OAM, or vice versa.  In a recent paper [11] we used full 
numerical simulations based on Maxwell’s equations to show that such interconversions can be performed with relative 
ease and flexibility with the aid of a metallic cone or a solid dielectric cone. In the present paper we introduce a 
simplified analysis based on the Jones calculus to elucidate the physics underlying the reflection properties, and we point 
to the strengths and weaknesses of the approach. 

In preparation for the analysis of reflection from a cone, we describe in Sec. 2 the properties of circularly-polarized 
light reflected from a 90º metallic wedge. In Sec. 3 we show how the reflection of a circularly-polarized Gaussian beam 
from a hollow metallic cone endows the reflected beam with two units of OAM. The case of solid dielectric cones 
involving two total internal reflections will be the subject of Sec. 4. We mention in passing that, although conical 
reflectors have been studied in the past for their applications in atom traps [12, 13] and as end-reflectors in certain types 
of lasers [14, 15], their ability to convert optical SAM to OAM (or vice versa) does not appear to have been noticed. 

2. Reflection from a metallic wedge. The wedge geometry considered is shown in Fig. 1(a), and consists of two 
perfectly electrically conducting (PEC) plates joined at 90º. In particular, a right-handed circularly-polarized (RCP) 
Gaussian beam of free-space wavelength 0.5μm and having a FWHM of 4.0μm is incident along the negative z-axis, the 
wedge being aligned along the x-axis. The two successive bounces from the flat facets of the wedge cause the beam to 
return along the positive z-axis with the same sense of circular polarization as that of the incident beam (see below). The 
remaining plots in Fig. 1 show numerical results obtained from Maxwell’s equations for (b) |Ey |, (c) Sz, and (d) the 
relative phase between the x and y components of the field, all as functions of the transverse coordinates (x, y) following 
reflection of the incident field from the wedge. Figures 1(b, c) show that the field remains circularly symmetric upon 
reflection, whereas Fig. 1(d) confirms that the relative phase is 90º so that the reflected field is indeed RCP. 

Next we consider a simplified analysis of the wedge based on the Jones calculus. In particular, one finds the 
following Jones matrix for reflection from the wedge: 
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where the matrix element −1 arises due to the x-axis reversal upon double reflection, and ξ is the relative phase per 
reflection between the x and y polarizations at each interface. Here we note that for the wedge in Fig. 1(a) the x-polarized 
field is tangential to the interface, so it plays the role of an s-polarized incident field, whereas a y-polarized incident field 
plays the role of a p-polarized beam, and ξ = 180º. Thus, for the case of an incident RCP beam with Jones vector 

i col( , ) col(1, i),x yE E E= =  noting that the incident light propagates along the negative z-axis, the reflected Jones vector 

is col(1, i),rE = − −  which is also RCP assessed with respect to the positive z-axis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Maxwell-equations-based simulation of reflection from a wedge-shaped reflector consisting of two 
PEC sheets joined at 90º along the x-axis. The reflector length, width, and height used in these simulations 
were l = w = 12μm, h = 6μm. The RCP Gaussian beam is incident from above. After two successive 
reflections at the sheets, the beam returning along the positive z-axis remains right-circularly polarized. 

 
We may take the Jones calculus approach one step further and incorporate the diffraction that must occur as the 

incident field propagates into and out of the wedge. For this we denote the incident field in Jones vector notation as 

i (( , ) col , ) ( , ,),[ ]x yxE x y E Ey x y=  and write the operator for propagation over a distance z as D (z)— this operator acts 

on both vector components of the field. Then we may approximate the reflected field as 

 i( , ) ( ) ( ) ( , ),rE x y D h M D h E x yξ′=  (2) 

where the reflected field ( , )rE x y  is evaluated at the exit of the wedge of height h. Equation (2) represents a 
symmetrized split-step approximation to propagation into and out of the cone consisting of free-space propagation into 
the cone of height h followed by application of the Jones matrix in Eq.(1), and then finally free-space propagation for a 
distance h out of the cone. Figure 2 shows the simulations based on Eq.(2) corresponding to the Maxwell simulations in 
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Fig. 1, with excellent overall agreement. In particular, we see that the reflected beam remains circularly symmetric and 
that the relative phase remains 90º, that is, the reflected beam is RCP. 

3. Reflection from a metallic cone. The geometry for the metallic cone is shown in Fig. 3(a), and we shall see below 
that it shows marked differences in reflection characteristics from the case of the wedge. The Maxwell equation 
simulation results shown in Fig. 3(b,c,d) reveal that the reflected beam no longer remains Gaussian, but takes on a 
structure reminiscent of an optical vortex with low intensity at the origin, Figs.3(b,c), and a 4π  phase winding around the 
cone center; see Fig.3(d). More specifically, we find that the spin angular momentum associated with the incident RCP 
beam reverses direction upon reflection, and that the beam also acquires twice as much OAM, associated with its 
vorticity, in such a way as to precisely cancel out the reversed SAM of the light beam.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Simplified Jones calculus simulation of reflection of a Gaussian beam from a wedge-shaped 
reflector using Eq. (2). The parameters are the same as for Fig. 1. 

Figure 3 displays the advertised conversion between SAM and OAM. We may gain insight into the underlying 
physics by further developing the Jones calculus approach. For this we first note that the Jones matrix must vary with 
azimuthal angle θ  around the cone origin. The reason for this is that the local tangent to the cone, which plays the role of 
the s-polarized direction, and the radial vector direction, which plays the role of the p-polarized direction, both rotate 
with θ . By virtue of this variation, the s- and p-polarization directions are undefined at the cone origin, meaning that the 
cone origin presents a singularity. If we choose a basis to coincide with the local s- and p-polarized directions at the 
angular position θ = 0 on the cone, the local Jones matrix must be of the form of Eq.(1). For an angular position θ  we 
then have 1( ) ( ) ( ),M R M Rξ ξθ θ θ− ′=  where R(θ ) is the rotation matrix in two-dimensional space. Evaluating this we 

find, 

 cos(2 )cos( ) i sin( ) sin(2 )cos( )
( ) exp(i ) .

sin(2 )cos( ) cos(2 )cos( ) i sin( )
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For the case of the PEC cone in Fig. 3 we set ξ = 180º, then for a RCP input i col (1, i)E =  we find 

exp(2i )col(1, i).rE θ= − −  The reflected field is therefore RCP with two units of OAM, or winding number 2, around the 
cone axis in agreement with Fig.3. The 4π  phase spiral associated with the beam reflected from the PEC cone may be 
interpreted as a Pancharatnam-Berry phase [16,17,18] that arises from the fact that the input beam encircles the 
singularity at the center of the cone. Incidentally, this terminology is also used in conjunction with the vorticity imparted 
to a circularly-polarized beam upon passage through a q-plate [10]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. (a) Hollow PEC conical reflector having a 90º apex angle. In our simulations, the cone’s base 
radius and height were R = h = 6 μm. The same RCP Gaussian beam as used in Fig. 1 is incident from 
above, along the negative z-axis. (b) |Ey |, (c) Sz, and (d) phase profile of Ey.  

We may generalize Eq.(2) for reflection from the PEC cone as follows: 

 2 i( , ) ( ) ( ) ( ) ( , ),rE x y I D h M D h E x yξ θ=  (4) 

where I2 performs a two-dimensional inversion around the cone origin. The need for this inversion can be seen by 
following an input parallel ray and following its path for two reflections through the cone. Figure 4 shows the results 
from this calculation for the same parameters as in Fig. 3, with very good overall agreement. In particular, we see the  4π 
phase twist on the reflected beam, Fig.4(d), and also the doughnut shape of the reflected field, Figs.4(a,b,c). However, it 
is clear from the Maxwell-equations-based simulations in Fig.3 that the 4π  phase-winding results from two optical 
vortices of unity winding number whose cores are slightly off-center, whereas the approximate analysis in Fig. 4 shows a 
single optical vortex of winding number 2. Furthermore, the approximate analysis yields field profiles that are circularly 
symmetric, whereas the Maxwell simulations in Fig. 3 show asymmetry in |Ex, y(x,y) | , although Sz (x,y) remains 
cylindrically symmetric. 
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4. Reflection of circularly-polarized light from a transparent dielectric cone. In place of the hollow PEC cone 
described in Sec. 3, we would now like to employ a solid dielectric cone to retro-reflect the incident Gaussian beam. A 
first requirement for the dielectric cone is that its refractive index ncone be large enough that the 45º incidence angle on its 
conical surface exceed the critical angle of total internal reflection (TIR). A second requirement is for the cone to have 
an anti-reflection coating on its top surface to ensure that the entire beam enters the cone and then, following two internal 
reflections, leaves the cone. [For numerical computations, the simplest anti-reflection coating is a quarter-wave-thick 
dielectric layer of refractive index √ ncone ; see Fig. 5(a).] Even after the above considerations, the dielectric cone differs 
from the PEC cone in one important respect: the phase difference ξ  between the reflected Ep and Es components of 
polarization, appearing in the Jones matrix Mξ(θ ) in Eq.(3), depends on the cone’s refractive index, ncone, thus 
introducing different states of elliptical polarization in the reflected beam. 

We present two cases of retro-reflection from conical dielectrics of differing refractive indices in order to 
understand the various aspects of SAM-to-OAM conversion. Figures 5(b,c,d) show the characteristics of the reflected 
beam when a 90º glass cone of refractive index ncone = 1.55, base radius = height = 6 μm, coated with a 100 nm-thick 
layer of refractive index ncoat = 1.245, is illuminated with the same RCP Gaussian beam as used in Fig.1 (λo = 0.5 μm, 
FWHM = 4 μm). For the chosen ncone, the phase-difference between the s- and p-components of the light rays after each 
TIR is φ s−φp = 45º, resulting in a net phase-shift (upon two reflections) of 90º and, therefore, complete conversion of the 
incident circular polarization to linear polarization. The reflected beam thus has no SAM, but is endowed with a certain 
amount of OAM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Jones calculus simulations of reflection from a PEC cone. The same RCP Gaussian beam as used in 
Fig. 1 is incident on the cone along the negative z-axis. (a) |Ex|, (b) |Ey|, (c) Sz, and (d) phase of Ey. 

The reflected beam in this example is linearly polarized, as is revealed in the plot of the relative phase (not shown), 
which is nearly zero in some regions and almost 180º in others. Both Ex and Ey (Fig. 5(d)) show 4π  vorticity in their 
phase structure, but the corresponding OAM is only half as much as that of a full 4π  vortex, because |Ex| and |Ey| (Fig. 
5(b)) are not uniformly distributed around z. The plot of Sz in Fig.5(c) is doughnut-like, albeit with a partially-filled hole. 
The proximity of the 45º angle of incidence on the conical surface to the critical TIR angle of 40.18º is responsible for a 
small fraction of the incident light leaking out of the cone. In our simulation, the actual fraction of the incident light that 
returned along +z was 92.1%; the corresponding AM of the returning beam was 92.6% that of the incident. 
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We may use the Jones calculus approach to gain insight into the reflected field using the Jones matrix in Eq.(3) 
with ξ = 45º. In particular, for a RCP input field i col (1, i)E =  the y-component of the reflected field is found to be 

Ey = [iexp(2iθ )−1], that is a superposition of an optical vortex of winding number l = 2 and a plane-wave. It is well 
known that such a superposition yields a pair of unit-winding-number optical vortices with separated centers, and this 
provides an explanation of the vortex splitting evident in Figs.5(b, d). Further analysis based on the Jones matrix reveals 
that |Ex (x,y) | should be the same as |Ey (x,y) | in Fig.5(b) but rotated by 90º, and that the reflected beam should be 
linearly-polarized as observed in the Maxwell simulations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Maxwell-equations-based simulations of reflection of a RCP Gaussian beam from a glass cone; 
ncone = 1.55, R = 6 μm, h = 6 μm, ncoat = 1.245, tcoat = 100 nm. (a) dielectric cone geometry, (b) |Ey(x,y)|, (c) 
Sz, and (d) phase profile of the y-component of the reflected field. 

Figure 6 shows the results for the field reflected from the dielectric cone using the Jones matrix approach and 
Eqs. (3) and (4) — in the present case, D (h) is the diffraction operator for propagation in the cone medium. While there 
is good qualitative agreement, we note that the central beam intensity is not as low for the simple model (compare 
Fig. 5(c) with Fig. 6(c)), but it captures the field magnitude/phase profiles rather well (compare Figs.5(b,d) with 
Figs.6(b,d)). 

In our second set of simulations, we chose ncone = 2.56, and coated the top facet of the cone with a 78 nm-thick layer 
of refractive index ncoat = 1.6. As before, the cone’s base radius was equal to its height at 6 μm, and the incident RCP 
Gaussian beam had λo = 0.5 μm, FWHM = 4 μm. The phase-shift introduced between the s- and p-components after each 
TIR is now φ s−φp= 79.3º, resulting in a state of elliptical polarization upon retro-reflection from the cone. Figure 7 
shows the characteristics of the reflected beam from the Maxwell simulations in this case. The reflected optical power is 
now close to 100% of the incident power (i.e., no leakage through the cone). While the incident AM is exclusively due to 
spin, the reflected beam contains a mixture of SAM and OAM. Figure 8 shows the corresponding simulations based on 
the Jones calculus with good overall agreement. 
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Fig. 6 Jones calculus simulations of reflection of a RCP Gaussian beam from a glass cone (ncone = 1.55, 
R = h = 6 μm, ncoat = 1.245, tcoat = 100 nm). (a) |Ex(x, y)|, (b) |Ey(x, y)|, (c) Sz, (d) phase profile of reflected Ey. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Maxwell simulation of reflection of a RCP Gaussian beam from a glass cone; ncone = 2.56, 
R = h = 6 μm, ncoat = 1.6, tcoat = 78 nm. (a) |Ex(x, y)|, (b) |Ey(x, y)|, (c) Sz, (d) phase profile of reflected Ey. 
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Fig. 8 Jones calculus simulation of reflection of a RCP Gaussian beam from a glass cone; ncone = 2.56, 
R = h = 6 μm, ncoat = 1.6, tcoat = 78 nm. (a) |Ex(x, y)|, (b) |Ey(x, y)|, (c) Sz, (d) phase profile of reflected Ey. 

5. Concluding remarks. In summary, our goal in this paper was to demonstrate that the physics underlying the spin-to-
orbital angular momentum conversion properties of a conical reflector can be elucidated using a simple Jones calculus 
based approach that also provides good qualitative agreement with simulations based on Maxwell’s equations. In 
contrast to the Maxwell-equations-based simulations that take several hours on a supercomputer, the simulations based 
on the Jones calculus may be performed in a few seconds on a personal computer. The Jones calculus approach therefore 
provides a useful qualitative approach to explore light reflection from a PEC cone, and we shall be pursuing this 
approach in the future. 
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