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Abstract. The classical theory of electrodynamics is built upon Maxwell’s equations and the concepts of 
electromagnetic field, force, energy and momentum, which are intimately tied together by Poynting’s 
theorem and the Lorentz force law. Whereas Maxwell’s macroscopic equations relate the electric and 
magnetic fields to their material sources (i.e., charge, current, polarization and magnetization), Poynting’s 
theorem governs the flow of electromagnetic energy and its exchange between fields and material media, 
while the Lorentz law regulates the back-and-forth transfer of momentum between the media and the 
fields. The close association of momentum with energy thus demands that the Poynting theorem and the 
Lorentz law remain consistent with each other, while, at the same time, ensuring compliance with the 
conservation laws of energy, linear momentum, and angular momentum. This paper shows how a 
consistent application of the aforementioned laws of electrodynamics to moving permanent dipoles (both 
electric and magnetic) brings into play the rest-mass of the dipoles. The rest mass must vary in response 
to external electromagnetic fields if the overall energy of the system is to be conserved. The physical 
basis for the inferred variations of the rest-mass appears to be an interference between the internal fields 
of the dipoles and the externally applied fields. We use two different formulations of the classical theory 
in which energy and momentum relate differently to the fields, yet we find identical behavior for the rest-
mass in both formulations. 

1. Introduction. The electrodynamics of moving media is a complex subject that has been 
discussed in several papers, textbooks and monographs [1-18], yet continues to attract attention 
for its practical applications as well as its relevance to fundamental issues involving field-matter 
interactions. In the early days of the 20th century, Minkowski used ideas from the newly 
developed theory of relativity to analyze the dynamics of arbitrarily moving bodies in the 
presence of electromagnetic (EM) fields. He constructed a stress-energy tensor for EM systems 
that incorporated the electric field E, the magnetic field H, the displacement D, and the magnetic 
induction B, relating the strength of these fields at each point (𝒓, 𝑡) in space-time to the 
corresponding field strengths in a local rest frame of the material media at (𝒓′, 𝑡′) [1]. Einstein 
and Laub initially endorsed Minkowski’s analysis, and proceeded to summarize his results while 
presenting them in a less abstract language and in simplified form [2]. Subsequently, Einstein 
and Laub expressed skepticism of Minkowski’s general formula for the ponderomotive force 
exerted on bodies in the EM field, and presented their own formulation for bodies at rest [3]. In 
the meantime, Abraham, also relying on notions of relativity and the Lorentz transformation of 
coordinates and fields between inertial frames, developed a modified version of Minkowski’s 
stress-energy tensor for moving bodies in the presence of EM fields [4,5]. In the 1950s, L. J. Chu 
and his colleagues at the Massachusetts Institute of Technology attempted to construct a 
consistent theory of macroscopic electrodynamics, and proceeded to extend their methodology to 
systems of moving bodies hosting electrical charges and currents as well as polarization and 
magnetization [6]. A good example of the sophisticated tools and techniques that have been 
deployed to study the electrodynamics of moving media may be found in the monograph by 
Penfield and Haus, who employed the principle of virtual power to derive energy, momentum, 
force and torque formulas for arbitrarily moving polarizable and magnetizable media in diverse 
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circumstances [8]. Despite the progress made, Schieber’s remarks on the difficulty of extending 
Maxwell’s electrodynamics of media at rest to moving bodies are particularly instructive [12]. 

Compared to what has already been discussed in the literature, the present paper has a 
decidedly narrow focus and limited scope. However, our main conclusion that the rest-mass of 
electric and magnetic dipoles must vary in the presence of external electromagnetic fields is 
apparently new, as it did not turn up in our search of the existing literature. To guide the reader 
along the path to the above conclusion, we examine several thought experiments involving the 
exchange of energy and momentum between EM fields and point-particles in uniform 
translational or rotational motion. We rely solely on Maxwell’s equations, the special theory of 
relativity, and the force and torque laws of classical electrodynamics. No significant approxi-
mations will be made and no new physical principles will be introduced. The reader may 
disagree with our interpretation of the various terms appearing in the classical equations, but the 
final results are independent of such interpretations and should stand on their own. We conclude 
that, while a point-charge has a fixed rest-mass which does not change as a result of interaction 
with external EM fields, permanent point-dipoles (both electric and magnetic) exhibit variations 
in their rest-mass which depend on their state of motion, their orientation relative to external 
fields, and the strength of the external fields. 

After a brief overview in Sec.2, we describe in Secs.3 through 6 the fundamental 
assumptions and equations of classical electrodynamics on which the remainder of the paper is 
based. We take Maxwell’s macroscopic equations seriously, and rely on their prescription for the 
EM structure of individual point-dipoles. In a departure from the conventional treatment of 
polarization 𝑷(𝒓, 𝑡) and magnetization 𝑴(𝒓, 𝑡) as locally averaged densities of dipole moments 
which are reducible to electrical charge and current densities, we consider 𝑷 and 𝑴 as precise 
descriptors of electric and magnetic dipole-moment densities, on a par with free charge and free 
current densities, 𝜌free(𝒓, 𝑡) and 𝑱free(𝒓, 𝑡). Maxwell’s macroscopic equations are thus taken to 
be exact mathematical relations between the primary sources (𝜌free, 𝑱free,𝑷,𝑴) and the EM 
fields 𝑬,𝑯,𝑫 = 𝜀o𝑬 + 𝑷, and 𝑩 = 𝜇o𝑯 + 𝑴, which are produced by these sources. Maxwell’s 
equations can then be “arranged” in different ways; we explore two such arrangements that are 
frequently encountered in the literature, each with its own expressions for the EM energy-
density, Poynting vector, stress tensor, force and torque densities (exerted by the fields on 
material media), and the EM momentum-density. These two approaches to classical 
electrodynamics will be referred to as the Lorentz and Einstein-Laub formulations. An important 
conclusion reached in this paper is that, in every situation examined and despite numerous 
differences in the intermediate steps, the two formulations yield precisely the same answer for 
the time-rate-of-change of a dipole’s rest-mass. 

Section 7 provides a brief review of the relativistic dynamics of a point-mass. A point-
charge traveling at an essentially constant velocity in a uniform electric field is examined in 
Sec.8, where it is shown that the particle’s rest-mass remains unchanged as it gains or loses 
kinetic energy. The same is not necessarily true of electric and magnetic point-dipoles traveling 
in EM fields, as shown by several examples in Secs.9 through 12. The cases of rotating electric 
and magnetic dipoles in static fields are treated in Secs.13 and 14, respectively, where it is 
shown once again that a dipole’s rest mass (as well as its moment of inertia) could vary in the 
presence of an external field. The final section is devoted to closing remarks and general 
conclusions. 
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It must be emphasized at the outset that we are not dealing in this paper with elementary 
particles which obey the laws of quantum electrodynamics. Our point-particles are small 
spherical objects subject to Maxwell’s equations and other rules and constraints of classical 
electrodynamics. For mathematical convenience, we rely on Dirac’s delta-function to represent 
the localization of point-particles in three-dimensional Euclidean space. The end results, 
however, could be derived for any sufficiently small and homogeneous spherical particle within 
which the externally applied EM fields would remain substantially uniform. 

2. Synopsis. For a free particle of rest-mass 𝔪0 moving with velocity 𝑽(𝑡), the relativistic 
energy and linear momentum are given, respectively, by ℰ(𝑡) = 𝛾𝔪0𝑐2 and 𝓟(𝑡) = 𝛾𝔪0𝑽, 
where 𝑡 stands for time, c is the speed of light in vacuum, and 𝛾 = 1/�1 − (𝑉/𝑐)2. The classical 
EM theory enables us to calculate dℰ/d𝑡 and d𝓟/d𝑡 from a knowledge of the external fields and 
the EM properties of the moving particle. The close connection between the above entities then 
allows one to infer the time-rate-of-change of the particle’s rest-mass in various circumstances. 

Intuitively, one may imagine a point-charge as a small, uniformly charged, solid sphere, 
whose internal E-field points radially toward or away from the center of the particle. Imposition 
of an external E-field over this internal E-field does not affect the particle’s internal energy, as 
the volume integral of the E-field energy-density, ½𝜀o|𝑬ext + 𝑬int|2, will have no contributions 
from the cross-term 𝜀o𝑬ext ∙ 𝑬int (here 𝜀o is the permittivity of free space). In contrast, a moving 
electric or magnetic dipole will have strong internal E and/or H fields which do not average out 
to zero. Superposition of internal and external fields can thus produce cross-terms in the form of 
𝜀o𝑬ext ∙ 𝑬int or 𝜇o𝑯ext ∙ 𝑯int or 𝜇o−1𝑩ext ∙ 𝑩int (with 𝜇o being the permeability of free space), 
which contribute to the particle’s internal energy and, consequently, modify its rest-mass 𝔪0. We 
present several examples in Secs.9-14 where such situations arise, and proceed to relate the time-
rate-of-change of 𝔪0 to the various parameters of the system under consideration. 

Our basic assumption will be that mass and energy are equivalent (ℰ = 𝔪𝑐2). A rocket or a 
planet shedding or accreting mass must have a time-dependent rest-mass, and so could a particle 
that is radiating or absorbing electromagnetic energy. Drawing a closed surface around and 
immediately outside the particle, we proceed to calculate the rates at which EM energy and EM 
momentum cross this surface and, therefore, enter or exit the particle. Once inside the particle, 
we suppose that the time-rate-of-change of the EM momentum, d𝓟/d𝑡, is the total instantaneous 
force 𝑭ext(𝑡) exerted by the external world on the moving particle. (This is the most general 
definition of force, although, as a matter of fact, the symbol 𝑭ext is redundant; the entire 
calculation can be carried out in terms of d𝓟/d𝑡, without any reference whatsoever to force.) A 
similar argument applies to the EM energy: once it crosses the enclosing surface, it becomes part 
and parcel of the mass-energy of the particle. Having determined d𝓟/d𝑡 and dℰ/d𝑡 as the rates 
of exchange of EM momentum and EM energy between the particle and the outside world, we 
proceed to calculate the time-rate-of-change d(𝔪o𝑐2)/d𝑡 of the rest-energy of the particle using 
the close connection among the aforementioned entities. The exact relationship needed for this 
analysis will be derived in Sec.7. 

Whereas Maxwell’s equations are unique and undisputed, there exist alternative expressions 
for EM force, torque, energy, and momentum in the classical literature. We focus our attention 
on two different approaches to the latter aspects of electrodynamics, one that can loosely be 
associated with the name of H. A. Lorentz, and another whose origins could be traced to A. 
Einstein and J. Laub. While in the Lorentz approach electric and magnetic dipoles are reduced to 
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bound electrical charges and currents, the Einstein-Laub treatment considers dipoles as 
independent entities, on a par with free electrical charge and current. It will be seen that the 
Lorentz and Einstein-Laub formalisms, although differing in intermediate steps, always end up 
with the same results for the time-rate-of-change of the rest-mass. We have discussed the relative 
merits of these two formulations elsewhere [19-24], and been criticized for not paying due 
attention to hidden momentum in our treatment of the Lorentz formalism [25-36]. Here we only 
would like to emphasize that, in applications involving solid (as opposed to deformable) media, 
the Einstein-Laub theory yields results that are identical to those obtained in the Lorentz 
approach, albeit without the need for hidden energy and hidden momentum inside magnetic 
matter. In contrast, hidden entities are inescapable companions of the Lorentz approach [37-59]. 

3. Maxwell’s macroscopic equations. We take Maxwell’s macroscopic equations as our point 
of departure. In addition to free charge and free current densities, 𝜌free(𝒓, 𝑡) and 𝑱free(𝒓, 𝑡), the 
macroscopic equations contain polarization 𝑷(𝒓, 𝑡) and magnetization 𝑴(𝒓, 𝑡) as sources of the 
EM field [60-62]. It is important to recognize that Maxwell’s equations, taken at face value, do 
not make any assumptions about the nature of P and M, nor about the constitutions of electric 
and magnetic dipoles. These equations simply take polarization and magnetization as they exist 
in Nature, and enable one to calculate the fields 𝑬(𝒓, 𝑡) and 𝑯(𝒓, 𝑡) whenever and wherever the 
spatio-temporal distributions of the sources (𝜌free, 𝑱free,𝑷,𝑴) are fully specified. 

In Maxwell’s macroscopic equations, P and M are lumped together with the E and H fields, 
which then appear as the displacement 𝑫(𝒓, 𝑡) = 𝜀o𝑬 + 𝑷 and the magnetic induction 𝑩(𝒓, 𝑡) =
𝜇o𝑯 + 𝑴. In their most general form, Maxwell’s macroscopic equations are written 

 𝜵 ∙ 𝑫 = 𝜌free, (1a) 

 𝜵 × 𝑯 = 𝑱free + 𝜕𝑫/𝜕𝑡, (1b) 

 𝜵 × 𝑬 = −𝜕𝑩/𝜕𝑡, (1c) 

 𝜵 ∙ 𝑩 = 0. (1d) 
It is possible to interpret the above equations in different ways, without changing the results 

of calculations. In what follows, we rely on two different interpretations of the macroscopic 
equations. This is done by simply re-arranging the equations without changing their physical 
content. We shall refer to the two re-arrangements (and corresponding interpretations) as the 
Lorentz formalism and the Einstein-Laub formalism. 

In the Lorentz formalism, Eqs.(1a) and (1b) are re-organized by eliminating the D and H 
fields. The re-arranged equations are subsequently written as follows: 

 𝜀o𝜵 ∙ 𝑬 = 𝜌free − 𝜵 ∙ 𝑷, (2a) 

 𝜵 × 𝑩 = 𝜇o( 𝑱free + 𝜕𝑷
𝜕𝑡

+ 𝜇o−1𝜵 × 𝑴) + 𝜇o𝜀o
𝜕𝑬
𝜕𝑡

, (2b) 

 𝜵 × 𝑬 = −𝜕𝑩
𝜕𝑡

, (2c) 

 𝜵 ∙ 𝑩 = 0. (2d) 
In this interpretation, electric dipoles appear as bound electric charge and current densities 

(−𝜵 ∙ 𝑷 and 𝜕𝑷/𝜕𝑡), while magnetic dipoles appear to act as Amperian current loops with a 
bound current-density given by 𝜇o−1𝜵 × 𝑴. None of this says anything about the physical nature 
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of the dipoles, and whether, in reality, electric dipoles are a pair of positive and negative electric 
charges joined by a short spring, or whether magnetic dipoles are small, stable loops of electrical 
current. All one can say is that eliminating D and H from Maxwell’s equations has led to a 
particular form of these equations which is consistent with the above suppositions concerning the 
physical nature of the dipoles. 

Next, consider an alternative arrangement of Maxwell’s equations, one that may be 
designated as the departure point for the Einstein-Laub formulation. Eliminating D and B from 
Eqs.(1), we arrive at 

 𝜀o𝜵 ∙ 𝑬 = 𝜌free − 𝜵 ∙ 𝑷, (3a) 

 𝜵 × 𝑯 = �𝑱free + 𝜕𝑷
𝜕𝑡
� + 𝜀o

𝜕𝑬
𝜕𝑡

, (3b) 

 𝜵 × 𝑬 = −𝜕𝑴
𝜕𝑡
− 𝜇o

𝜕𝑯
𝜕𝑡

, (3c) 

 𝜇o𝜵 ∙ 𝑯 = −𝜵 ∙ 𝑴. (3d) 
In the Einstein-Laub interpretation, the electric dipoles appear as a pair of positive and 

negative electric charges tied together by a short spring (exactly as in the Lorentz formalism). 
However, each magnetic dipole now behaves as a pair of north and south poles joined by a short 
spring. In other words, magnetism is no longer associated with an electric current density, but 
rather with bound magnetic charge and magnetic current densities −𝜵 ∙ 𝑴 and 𝜕𝑴/𝜕𝑡. We 
emphasize once again that such interpretations have nothing to do with the physical reality of the 
dipoles. The north and south poles mentioned above are not necessarily magnetic monopoles 
(i.e., the so-called Gilbert model [29]); rather, they are “fictitious” charges that acquire meaning 
only when Maxwell’s equations are written in the form of Eqs.(3). 

The two forms of Maxwell’s equations given by Eqs.(2) and (3) are identical, in the sense 
that, given the source distributions (𝜌free, 𝑱free,𝑷,𝑴), these two sets of equations predict exactly 
the same EM fields (𝑬,𝑫,𝑩,𝑯) throughout space and time. How one chooses to “interpret” the 
physical nature of the dipoles is simply a matter of taste and personal preference. Such 
interpretations are totally irrelevant as far as the solutions of Maxwell’s equations are concerned. 

4. Electromagnetic energy. Different interpretations of Maxwell’s macroscopic equations lead 
to different expressions for the EM energy-density and energy flow-rate. However, as will be 
seen in the examples of the following sections, the end results turn out to be the same. 

In the Lorentz formulation, we dot-multiply 𝑩(𝒓, 𝑡) into Eq.(2c), then subtract it from the 
dot-product of 𝑬(𝒓, 𝑡) and Eq.(2b). The end result is 

 𝑬 ∙ 𝜵 × 𝑩 − 𝑩 ∙ 𝜵 × 𝑬 = 𝜇o𝑬 ∙ � 𝑱free + 𝜕𝑷
𝜕𝑡

+ 𝜇o−1𝜵 × 𝑴� + 𝜇o𝜀o𝑬 ∙
𝜕𝑬
𝜕𝑡

+ 𝑩 ∙ 𝜕𝑩
𝜕𝑡

. (4) 

The left-hand-side of the above equation is equal to −𝜵 ∙ (𝑬 × 𝑩) according to a well-
known vector identity. We may thus define the Poynting vector in the Lorentz formalism as 

 𝑺𝐿 = 𝜇o−1𝑬 × 𝑩, (5) 
and proceed to rewrite Eq.(4) as 

 𝜵 ∙ 𝑺𝐿 + 𝜕
𝜕𝑡

(½𝜀o𝑬 ∙ 𝑬 + ½𝜇o−1𝑩 ∙ 𝑩) + 𝑬 ∙ � 𝑱free + 𝜕𝑷
𝜕𝑡

+ 𝜇o−1𝜵 × 𝑴� = 0. (6) 
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Thus, in the Lorentz interpretation, EM energy flows at a rate of 𝑺𝐿 per unit area per unit 
time, the stored energy-density in the E and B fields is 

 ℰ𝐿(𝒓, 𝑡) = ½𝜀o𝑬 ∙ 𝑬 + ½𝜇o−1𝑩 ∙ 𝑩, (7) 
and energy is exchanged between fields and media at a rate of 

 𝜕
𝜕𝑡
ℰ𝐿

(exch)(𝒓, 𝑡) = 𝑬 ∙ 𝑱total    (per unit volume per unit time), (8) 

where 𝑱total is the sum of free and bound current densities; see Eq.(6). Note that the exchange of 
energy between the fields and the media is a two-way street: When 𝑬 ∙ 𝑱 is positive, energy 
leaves the field and enters the material medium, and when 𝑬 ∙ 𝑱 is negative, energy flows in the 
opposite direction. All in all, we have imposed our own interpretation on the various terms 
appearing in Eq.(6), which is the mathematical expression of energy conservation. The validity 
of Eq.(6), however, being a direct and rigorous consequence of Maxwell’s equations, is 
independent of any specific interpretation.  

A similar treatment of EM energy-density and energy flow-rate can be carried out in the 
Einstein-Laub approach. This time, we dot-multiply Eq.(3c) into 𝑯(𝒓, 𝑡) and subtract the 
resulting equation from the dot-product of 𝑬(𝒓, 𝑡) into Eq.(3b). We find 

 𝜵 ∙ (𝑬 × 𝑯) + 𝜕
𝜕𝑡

(½𝜀o𝑬 ∙ 𝑬 + ½𝜇o𝑯 ∙ 𝑯) + �𝑬 ∙ 𝑱free + 𝑬 ∙ 𝜕𝑷
𝜕𝑡

+ 𝑯 ∙ 𝜕𝑴
𝜕𝑡
� = 0. (9) 

Thus, in the Einstein-Laub interpretation, the Poynting vector is 

 𝑺𝐸𝐿 = 𝑬 × 𝑯, (10) 
the stored energy-density in the E and H fields is 

 ℰ𝐸𝐿(𝒓, 𝑡) = ½𝜀o𝑬 ∙ 𝑬 + ½𝜇o𝑯 ∙ 𝑯, (11) 
and energy is exchanged between fields and media at the rate of 

 𝜕
𝜕𝑡
ℰ𝐸𝐿

(exch)(𝒓, 𝑡) = 𝑬 ∙ 𝑱free + 𝑬 ∙ 𝜕𝑷
𝜕𝑡

+ 𝑯 ∙ 𝜕𝑴
𝜕𝑡

   (per unit volume per unit time). (12) 

Once again, energy conservation is guaranteed by Eq.(9), which is a direct and rigorous 
consequence of Maxwell’s equations, irrespective of how one might interpret the various terms 
of the equation. 

It is noteworthy that the commonly used Poynting vector 𝑺 = 𝑬 × 𝑯 [60-62] is the one 
derived in the Einstein-Laub formalism. The Poynting vector 𝑺𝐿 = 𝜇o−1𝑬 × 𝑩 associated with the 
Lorentz interpretation (and preferred by some authors [63,64]) has been criticized on the grounds 
that it does not maintain the continuity of EM energy flux across the boundary between two 
adjacent media [61]. The simplest example is provided by a plane EM wave arriving from free 
space at the flat surface of a semi-infinite magnetic dielectric at normal incidence. The boundary 
conditions associated with Maxwell’s equations dictate the continuity of the E and H 
components that are parallel to the surface of the medium. Thus, at the entrance facet, the flux of 
energy associated with 𝑺𝐿 exhibits a discontinuity whenever the tangential B field happens to be 
discontinuous. Proponents of the Lorentz formalism do not dispute this fact, but invoke the 
existence of a hidden energy flux at the rate of 𝜇o−1𝑴× 𝑬 that accounts for the discrepancy 
[8,58]. Be it as it may, since the hidden energy flux is not an observable, one may be forgiven for 
preferring the formalism that avoids the use of hidden entities. 
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5. Electromagnetic force and momentum. In the Lorentz formalism, all material media are 
represented by charge and current densities. Generalizing the Lorentz force law 𝒇 = 𝑞(𝑬 + 𝑽 ×
𝑩), which is the force exerted on a point-charge q moving with velocity V in the EM fields E 
and B, the force-density which is compatible with the interpretation of Maxwell’s equations in 
accordance with Eqs.(2) may be written as follows [60]: 

 𝑭𝐿(𝒓, 𝑡) = (𝜌free − 𝜵 ∙ 𝑷)𝑬 + ( 𝑱free + 𝜕𝑷
𝜕𝑡

+ 𝜇o−1𝜵 × 𝑴) × 𝑩. (13) 

Substitution for the total charge and current densities from Eqs.(2a) and (2b) into Eq.(13), 
followed by standard manipulations, yields 

 �⃖��⃗ ∙ �½(𝜀o𝑬 ∙ 𝑬 + 𝜇o−1𝑩 ∙ 𝑩)�⃡� − 𝜀o𝑬𝑬 − 𝜇o−1𝑩𝑩 � + 𝜕
𝜕𝑡

(𝜀o𝑬 × 𝑩) + 𝑭𝐿(𝒓, 𝑡) = 0. (14) 

In the above equation, �⃡� is the identity tensor and the bracketed entity is the Maxwell stress 
tensor �⃖��⃗ (𝒓, 𝑡). Thus the EM momentum-density in the Lorentz formalism (sometimes referred to 
as the Livens momentum [65]) is 𝑮(𝒓, 𝑡) = 𝜀o𝑬 × 𝑩 = 𝑺𝐿/𝑐2. According to Eq.(14), the EM 
momentum entering through the closed surface of a given volume is equal to the change in the 
EM momentum stored within that volume plus the mechanical momentum transferred to the 
material media located inside the volume. The Lorentz force density 𝑭𝐿(𝒓, 𝑡) is simply a measure 
of the transfer rate of momentum from the fields to the material media (or vice versa). 

In the Einstein-Laub formalism, the force density, which has contributions from the E and H 
fields acting on the sources (𝜌free, 𝑱free,𝑷,𝑴), is written [3]  

 𝑭𝐸𝐿(𝒓, 𝑡) = 𝜌free𝑬 + 𝑱free × 𝜇o𝑯 + (𝑷 ∙ ∇)𝑬 + 𝜕𝑷
𝜕𝑡

× 𝜇o𝑯 + (𝑴 ∙ ∇)𝑯− 𝜕𝑴
𝜕𝑡

× 𝜀o𝑬. (15) 

Substitution from Eqs.(3) into the above equation, followed by standard algebraic 
manipulations yields 

 �⃖��⃗ ∙ �½(𝜀o𝑬 ∙ 𝑬 + 𝜇o𝑯 ∙ 𝑯)�⃡� − 𝑫𝑬 − 𝑩𝑯� + 𝜕
𝜕𝑡

(𝑬 × 𝑯/𝑐2) + 𝑭𝐸𝐿(𝒓, 𝑡) = 0. (16) 

The bracketed entity on the right-hand-side of the above equation is the Einstein-Laub stress 
tensor �⃖��⃗ 𝐸𝐿(𝒓, 𝑡). Thus the EM momentum-density in the Einstein-Laub formulation (generally 
known as the Abraham momentum) is 𝑮(𝒓, 𝑡) = 𝑬 × 𝑯/𝑐2 = 𝑺𝐸𝐿/𝑐2. According to Eq.(16), the 
EM momentum entering through the closed surface of a given volume is equal to the change in 
the EM momentum stored within that volume plus the mechanical momentum transferred to the 
material media located inside the volume. The Einstein-Laub force density 𝑭𝐸𝐿(𝒓, 𝑡) is thus a 
measure of the transfer rate of momentum from the fields to the media (or vice versa). 

Note that the stress tensors of Lorentz and Einstein-Laub, when evaluated in the free-space 
region surrounding an isolated object, are exactly the same. This means that, in steady-state 
situations where the enclosed EM momentum does not vary with time, the force exerted on an 
isolated object in accordance with the Lorentz law is precisely the same as that calculated using 
the Einstein-Laub formula. Even in situations which depart from the steady-state, the actual force 
exerted on an isolated object remains the same in the two formulations. Here the difference 
between the EM momentum densities of Lorentz (𝜀o𝑬 × 𝑩) and Einstein-Laub (𝑬 × 𝑯/𝑐2), 
namely, 𝜀o𝑬 × 𝑴, accounts only for the hidden mechanical momentum inside magnetic dipoles 
[8,51-59]. Since hidden momentum has no observable effects on the force and torque exerted on 
material bodies [29], the difference in the EM momenta in the two formulations cannot have any 
physical consequences. 
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It is remarkable that Einstein and Laub proposed their force-density formula, Eq.(15), nearly 
six decades before Shockley discovered the lack of momentum balance in certain EM systems 
containing magnetic materials [37-39]. The concept of hidden momentum proposed by Shockley 
accounts for the momentum imbalance in EM systems that acquire mechanical momentum at a 
different rate than that dictated by the exerted Lorentz force. Had Shockley used the Einstein-
Laub force instead, he would have found perfect balance and no need for hidden momentum. 

6. Electromagnetic torque and angular momentum. The torque and angular momentum 
densities in the Lorentz formalism may be determined by cross-multiplying the position vector r 
into Eq.(14). We will have 

 𝒓 × 𝜕
𝜕𝑥

[½(𝜀o𝑬 ∙ 𝑬 + 𝜇o−1𝑩 ∙ 𝑩)𝒙� − 𝜀o𝐸𝑥𝑬 − 𝜇o−1𝐵𝑥𝑩] 

 +𝒓 × 𝜕
𝜕𝑦
�½(𝜀o𝑬 ∙ 𝑬 + 𝜇o−1𝑩 ∙ 𝑩)𝒚� − 𝜀o𝐸𝑦𝑬 − 𝜇o−1𝐵𝑦𝑩� 

 +𝒓 × 𝜕
𝜕𝑧

[½(𝜀o𝑬 ∙ 𝑬 + 𝜇o−1𝑩 ∙ 𝑩)𝒛� − 𝜀o𝐸𝑧𝑬 − 𝜇o−1𝐵𝑧𝑩] 

 +𝒓 × 𝜕
𝜕𝑡

(𝜀o𝑬 × 𝑩) + 𝒓 × 𝑭𝐿(𝒓, 𝑡) = 0. (17) 

On the left-hand-side of the above equation, the last term is the Lorentz torque density and 
the penultimate term is the time-rate-of-change of the EM angular momentum density. As for the 
remaining terms, one can move 𝒓 × inside the differential operators, as is readily verified by 
simple algebraic differentiation of the resulting expressions. We find 

 𝜕
𝜕𝑥

{𝒓 × [½(𝜀o𝑬 ∙ 𝑬 + 𝜇o−1𝑩 ∙ 𝑩)𝒙� − 𝜀o𝐸𝑥𝑬 − 𝜇o−1𝐵𝑥𝑩]} 

 + 𝜕
𝜕𝑦
�𝒓 × �½(𝜀o𝑬 ∙ 𝑬 + 𝜇o−1𝑩 ∙ 𝑩)𝒚� − 𝜀o𝐸𝑦𝑬 − 𝜇o−1𝐵𝑦𝑩�� 

 + 𝜕
𝜕𝑧

{𝒓 × [½(𝜀o𝑬 ∙ 𝑬 + 𝜇o−1𝑩 ∙ 𝑩)𝒛� − 𝜀o𝐸𝑧𝑬 − 𝜇o−1𝐵𝑧𝑩]} 

 + 𝜕
𝜕𝑡

(𝒓 × 𝑺𝐿/𝑐2) + 𝑻𝐿(𝒓, 𝑡) = 0. (18) 

The first three terms in Eq.(18) form the divergence of a 2nd rank tensor, thus confirming the 
conservation of angular momentum. The EM torque and angular momentum densities in the 
Lorentz formulation are thus given by 

 𝑻𝐿(𝒓, 𝑡) = 𝒓 × 𝑭𝐿(𝒓, 𝑡). (19) 

 𝓛𝐿(𝒓, 𝑡) = 𝒓 × 𝑺𝐿/𝑐2. (20) 

A similar procedure can be carried out within the Einstein-Laub formalism, but the end 
result, somewhat unexpectedly, turns out to be different. Cross-multiplication of both sides of 
Eq.(16) into r yields 

 𝒓 × 𝜕
𝜕𝑥

[½(𝜀o𝑬 ∙ 𝑬 + 𝜇o𝑯 ∙ 𝑯)𝒙� − 𝐷𝑥𝑬 − 𝐵𝑥𝑯]  

 +𝒓 × 𝜕
𝜕𝑦
�½(𝜀o𝑬 ∙ 𝑬 + 𝜇o𝑯 ∙ 𝑯)𝒚� − 𝐷𝑦𝑬 − 𝐵𝑦𝑯�  
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 +𝒓 × 𝜕
𝜕𝑧

[½(𝜀o𝑬 ∙ 𝑬 + 𝜇o𝑯 ∙ 𝑯)𝒛� − 𝐷𝑧𝑬 − 𝐵𝑧𝑯] 

 +𝒓 × 𝜕
𝜕𝑡

(𝑬 × 𝑯/𝑐2) + 𝒓 × 𝑭𝐸𝐿(𝒓, 𝑡) = 0. (21) 

It is not admissible, however, to move 𝒓 × inside the first three differential operators on the 
left-hand side of Eq.(21) without introducing certain additional terms. Considering that 𝜕𝒓/𝜕𝑥 =
𝒙�, 𝜕𝒓/𝜕𝑦 = 𝒚�, and 𝜕𝒓/𝜕𝑧 = 𝒛�, the requisite additional terms are going to be 

 𝒙� × [½(𝜀o𝑬 ∙ 𝑬 + 𝜇o𝑯 ∙ 𝑯)𝒙� − 𝐷𝑥𝑬 − 𝐵𝑥𝑯 ]  

 +𝒚� × �½(𝜀o𝑬 ∙ 𝑬 + 𝜇o𝑯 ∙ 𝑯)𝒚� − 𝐷𝑦𝑬 − 𝐵𝑦𝑯 � 

 +𝒛� × [½(𝜀o𝑬 ∙ 𝑬 + 𝜇o𝑯 ∙ 𝑯)𝒛� − 𝐷𝑧𝑬 − 𝐵𝑧𝑯 ] 
 = −𝑫 × 𝑬 − 𝑩 × 𝑯 = −𝑷 × 𝑬 −𝑴 × 𝑯. (22) 
We may thus rewrite Eq.(21) as follows: 

 𝜕
𝜕𝑥

{𝒓 × [½(𝜀o𝑬 ∙ 𝑬 + 𝜇o𝑯 ∙ 𝑯)𝒙� − 𝐷𝑥𝑬 − 𝐵𝑥𝑯]}  

 + 𝜕
𝜕𝑦
�𝒓 × �½(𝜀o𝑬 ∙ 𝑬 + 𝜇o𝑯 ∙ 𝑯)𝒚� − 𝐷𝑦𝑬 − 𝐵𝑦𝑯��  

 + 𝜕
𝜕𝑧

{𝒓 × [½(𝜀o𝑬 ∙ 𝑬 + 𝜇o𝑯 ∙ 𝑯)𝒛� − 𝐷𝑧𝑬 − 𝐵𝑧𝑯]} 

 + 𝜕
𝜕𝑡

(𝒓 × 𝑺𝐸𝐿/𝑐2) + 𝒓 × 𝑭𝐸𝐿(𝒓, 𝑡) + 𝑷 × 𝑬 + 𝑴 × 𝑯 = 0. (23) 

Once again, the first three terms of Eq.(23) form the divergence of a 2nd rank tensor, thus 
confirming the conservation of angular momentum, while the remaining terms yield expressions 
for the EM torque and angular momentum densities, as follows: 

 𝑻𝐸𝐿(𝒓, 𝑡) = 𝒓 × 𝑭𝐸𝐿 + 𝑷 × 𝑬 + 𝑴 × 𝑯. (24) 

 𝓛𝐸𝐿(𝒓, 𝑡) = 𝒓 × 𝑺𝐸𝐿/𝑐2. (25) 

In their original paper [3], Einstein and Laub mentioned the need for the inclusion of 𝑷 × 𝑬 
and 𝑴 × 𝑯 terms in the torque-density expression only briefly and with specific reference to 
anisotropic bodies. Of course, in linear, isotropic, non-absorbing media, where P is parallel to E 
and M is parallel to H, both cross-products vanish. However, in more general circumstances, the 
torque expression must include these additional terms. The above derivation of Eq.(23) should 
make it clear that the EM torque-density of Eq.(24) has general validity, and that conservation of 
angular momentum demands the addition of  𝑷 × 𝑬 and 𝑴 × 𝑯 terms to 𝒓 × 𝑭𝐸𝐿. 

As was the case with the EM force discussed in the preceding section, the effective EM 
torque exerted on an isolated object always turns out to be the same in the Lorentz and Einstein-
Laub formulations; any differences between the two approaches can be reconciled by subtracting 
the contributions of hidden angular momentum from the Lorentz torque [22,29]. 

7. Energy gain and loss by a point-particle. Consider a point-mass 𝔪o moving arbitrarily in 
free space, its position at time t being �𝑥𝑝(𝑡),𝑦𝑝(𝑡), 𝑧𝑝(𝑡)�. Denoting the instantaneous velocity 
of the particle by 𝑽𝑝(𝑡) = 𝑥𝑝′ (𝑡)𝒙� + 𝑦𝑝′(𝑡)𝒚� + 𝑧𝑝′ (𝑡)𝒛�, its mass-density by 𝓂(𝒓, 𝑡), its 
momentum-density by 𝓹(𝒓, 𝑡), and its energy-density by ℰ(𝒓, 𝑡), we will have 
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 𝓂(𝒓, 𝑡) = 𝔪o𝛿�𝑥 − 𝑥𝑝�𝛿�𝑦 − 𝑦𝑝�𝛿�𝑧 − 𝑧𝑝�, (26) 

 𝓹(𝒓, 𝑡) = 𝔪o𝛾(𝑡)𝑽𝑝(𝑡)𝛿�𝑥 − 𝑥𝑝�𝛿�𝑦 − 𝑦𝑝�𝛿�𝑧 − 𝑧𝑝�, (27) 

 ℰ(𝒓, 𝑡) = 𝔪o𝑐2𝛾(𝑡)𝛿�𝑥 − 𝑥𝑝�𝛿�𝑦 − 𝑦𝑝�𝛿�𝑧 − 𝑧𝑝�. (28) 

In the above equations, 𝛿(∙) is Dirac’s delta-function and 𝛾(𝑡) = 1/ �1 − 𝑽𝑝(𝑡) ∙ 𝑽𝑝(𝑡)/𝑐2 
is the Lorentz factor. The time-rate-of-change of the momentum-density is thus given by 

 𝜕
𝜕𝑡
𝓹(𝒓, 𝑡) = 𝔪o�𝛾′(𝑡)𝑽𝑝(𝑡) + 𝛾(𝑡)𝑽𝑝′ (𝑡)�𝛿�𝑥 − 𝑥𝑝�𝛿�𝑦 − 𝑦𝑝�𝛿�𝑧 − 𝑧𝑝� 

 −𝔪o𝛾(𝑡)𝑽𝑝(𝑡)�𝑉𝑝𝑥𝛿′�𝑥 − 𝑥𝑝�𝛿�𝑦 − 𝑦𝑝�𝛿�𝑧 − 𝑧𝑝� 

 +𝑉𝑝𝑦𝛿�𝑥 − 𝑥𝑝�𝛿′�𝑦 − 𝑦𝑝�𝛿�𝑧 − 𝑧𝑝� 

 +𝑉𝑝𝑧𝛿�𝑥 − 𝑥𝑝�𝛿�𝑦 − 𝑦𝑝�𝛿′�𝑧 − 𝑧𝑝��. (29) 

Integration over the volume of the particle eliminates the last three terms on the right-hand 
side of Eq.(29). Considering that 𝛾′(𝑡) = 𝛾3𝑽𝑝 ∙ 𝑽𝑝′ /𝑐2, we find the time-rate-of-change of the 
particle’s momentum, which is equal to the external force acting on the particle, to be 

 𝑭ext(𝑡) = d𝓟(𝑡)/d𝑡 = 𝛾𝔪o�𝛾2(𝑽𝑝 ∙ 𝑽𝑝′ )𝑽𝑝/𝑐2 + 𝑽𝑝′ �. (30) 

The rate at which energy is injected into (or extracted from) the particle is now found to be 

 𝑭ext(𝑡) ∙ 𝑽𝑝(𝑡) = 𝛾3𝔪o𝑽𝑝 ∙ 𝑽𝑝′ . (31) 

In similar fashion, one can evaluate the particle’s time-rate-of-change of energy as follows: 

 ∭ 𝜕ℰ(𝒓,𝑡)
𝜕𝑡

d𝑥d𝑦d𝑧∞
−∞ = 𝛾′(𝑡)𝔪o𝑐2 = 𝛾3𝔪o𝑽𝑝 ∙ 𝑽𝑝′ . (32) 

As expected, Eqs.(31) and (32) confirm that the particle’s rate-of-change of energy precisely 
equals the dot-product of the external force 𝑭ext(𝑡) and the particle’s velocity 𝑽𝑝(𝑡). In the 
special case when a point-charge q travels within an EM field, the energy exchange rate between 
the field and the particle will be 

 d
d𝑡
ℰ(𝑡) = 𝑭ext(𝑡) ∙ 𝑽𝑝(𝑡) = 𝑞�𝑬 + 𝑽𝑝 × 𝑩� ∙ 𝑽𝑝 = 𝑞𝑬 ∙ 𝑽𝑝. (33) 

Thus the charged particle either absorbs energy from the field or injects energy into the 
field, depending on the sign of 𝑞𝑬 ∙ 𝑽𝑝. 

The above arguments fail if the rest-mass 𝔪o of the particle happens to be time-dependent. 
Following the same procedure as outlined above, it is not difficult to show that, in general, 

 d(𝔪o𝑐2)
d𝑡

= 𝛾 �dℰ(𝑡)
d𝑡

− 𝑭ext(𝑡) ∙ 𝑽𝑝(𝑡)�. (34) 

A detailed derivation of Eq.(34) is given in Appendix A. Whenever dℰ(𝑡)/d𝑡 associated 
with a particle happens to differ from 𝑭ext(𝑡) ∙ 𝑽𝑝(𝑡), it must be concluded that the particle’s 
rest-mass 𝔪o varies with time in accordance with Eq.(34). For a particle at rest, 𝑽𝑝 = 0 and 
𝛾 = 1; Eq.(34) then shows that the entire EM energy gets incorporated into the rest-mass 𝔪o. In 
other words, in the absence of moving material bodies, the laws of EM force and EM energy are 
decoupled from each other. Once the particle has a nonzero velocity, however, Eq.(34) relates 
the energy and momentum exchanged between the particle and the fields to each other and to the 
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particle’s rest-mass 𝔪o. While some of the exchanged energy accounts for the variation in the 
particle’s kinetic energy, the remaining part (if any) must get incorporated into its rest-mass. The 
logic here is that certain fractions of the energy and momentum have disappeared from the field 
and entered the particle (or vice versa). The particle has rest-mass 𝔪o, velocity 𝑽𝑝, linear 
momentum 𝛾𝔪o𝑽𝑝, and total energy 𝛾𝔪o𝑐2. Taking into account the equivalence of mass and 
energy, the only way to enforce consistency among these entities is to accept the prescription of 
Eq.(34) for the time-rate-of-change of the rest-mass. 

8. Point-charge traveling in a constant electric field. In this first example, we demonstrate that 
a charged particle, acted upon by an external E field, gains or loses kinetic energy, while its rest-
mass remains intact. There is no need here to distinguish between the Lorentz and Einstein-Laub 
formulations, since, in the absence of P and M, the two theories are identical. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. A point-charge q moves at constant velocity V along the x-axis. The uniformly-charged 
parallel plates produce a constant and uniform electric field 𝐸0𝒙� in the region between the plates. 
The plates being non-conductive, their uniform charge distribution is not altered by the point-charge. 

Let a point-particle of charge q and (large) mass 𝔪o move at constant velocity V along the x-
axis. A pair of uniformly-charged parallel plates produces a constant and uniform electric field 
E0 along the x-axis, as shown in Fig.1. The mass 𝔪o is large enough that the force exerted by the 
E-field on the particle does not produce any significant acceleration, so that the velocity V 
remains essentially constant. The E and H fields of the moving particle can be found by 
straightforward Lorentz transformation from the particle’s rest frame, as follows: 

 𝑬(𝒓, 𝑡) = 𝛾𝑞[(𝑥−𝑉𝑡)𝒙�+𝑦𝒚�+𝑧𝒛�]
4𝜋𝜀o[𝛾2(𝑥−𝑉𝑡)2+𝑦2+𝑧2]3/2 , (35a) 

 𝑯(𝒓, 𝑡) = 𝛾𝑞𝑉(−𝑧𝒚�+𝑦𝒛�)
4𝜋[𝛾2(𝑥−𝑉𝑡)2+𝑦2+𝑧2]3/2 . (35b) 

The energy-densities of 𝐸𝑦,𝐸𝑧 ,𝐻𝑦,𝐻𝑧 , when integrated over all space (both inside and 
outside the cavity formed by the parallel plates), turn out to be independent of the time t. The 
energy-density of 𝐸𝑥, however, is mixed with that of the uniform E-field 𝐸0𝒙� within the cavity, 
requiring the integration of the cross-term 𝜀o𝐸0𝐸𝑥 over the volume of the cavity. The left-right 
symmetry with respect to the particle position allows a reduction of the integration range, as 
follows: 

 ∫ ∬ 𝜀o𝐸0𝐸𝑥(𝒓, 𝑡)d𝑥d𝑦d𝑧∞
−∞

−½𝑑+2𝑉𝑡
−½𝑑 = 𝑞𝐸0

4𝜋 ∫ ∬ 𝛾(𝑥−𝑉𝑡)
[𝛾2(𝑥−𝑉𝑡)2+𝑦2+𝑧2]3/2 

d𝑥d𝑦d𝑧∞
−∞

−½𝑑+2𝑉𝑡
−½𝑑  

 = 𝑞𝐸0
4𝜋𝛾 ∫ ∬ 𝑥

(𝑥2+𝑦2+𝑧2)3/2  
d𝑥d𝑦d𝑧∞

−∞
−𝛾(½𝑑−𝑉𝑡)
−𝛾(½𝑑+𝑉𝑡)  

 = −𝑞𝐸0𝑉𝑡. (36) 
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The time-rate of energy loss/gain by the field is therefore equal to −𝑞𝐸0𝑉, which is 
precisely equal in magnitude and opposite in sign to the time-rate of energy gain/loss by the 
moving particle in accordance with Eq.(33). (Note that the finite width d of the cavity is an 
important feature of the above calculation, even though d itself does not appear in the final result. 
In the absence of such a cavity, if one simply assumes the existence of a uniform E-field 
throughout the entire space, the total field energy would remain constant as the particle gains 
kinetic energy while moving forward, thus violating the principle of conservation of energy.) 

In summary, the charged particle gains kinetic energy at precisely the same rate as the EM 
field loses the energy stored in its E-field. The right-hand side of Eq.(34) thus vanishes, 
confirming that the rest-mass 𝔪o of the point-charge remains constant as it travels within the 
cavity depicted in Fig.1. 

9. Electric point-dipole traveling in the E-field of a charged wire. In this second example, a 
permanent electric dipole exchanges energy and momentum with an inhomogeneous external E 
field. Both the kinetic energy and the rest-mass of the dipole vary as a result of its interaction 
with the E field. The Lorentz and Einstein-Laub formalisms exhibit no substantive differences in 
the present example, neither in the intermediate steps nor in the final result.  

Figure 2(a) shows a uniformly-charged, infinitely long wire of charge-density λ0 [coulomb/ 
meter] parallel to the z-axis. The wire crosses the xy-plane at (𝑥,𝑦) = (−𝑥0, 0). The resulting E-
field along the x-axis is 𝑬(𝑥) = 𝜆0𝒙�/[2𝜋𝜀o(𝑥 + 𝑥0)]. A massive point-dipole 𝑝0𝒙� moves at 
constant velocity V along the x-axis; its polarization density (Lorentz-transformed from the rest 
frame of the particle [60]) is 

 𝑷(𝒓, 𝑡) = 𝑝0𝛿[𝛾(𝑥 − 𝑉𝑡)]𝛿(𝑦)𝛿(𝑧)𝒙�. (37) 

Here, as usual, 𝛾 = 1/�1 − (𝑉/𝑐)2, and 𝛿(∙) is Dirac’s delta-function. The right-hand side 
of the equation may be simplified with the aid of the identity 𝛿[𝛾(𝑥 − 𝑉𝑡)] = 𝛾−1𝛿(𝑥 − 𝑉𝑡). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. (a) An electric point-dipole 𝑝0𝒙�, traveling at a constant velocity V along the x-axis, is acted 
upon by the E field of a long, straight wire having a linear charge-density λ 0. The wire, which is 
parallel to the z-axis, crosses the xy-plane at (x, y) = (−x0, 0). (b) Magnified view of the interior of 
the point-dipole. In its rest frame, the uniformly-polarized sphere of polarization 𝑃𝒙� has a uniform 
internal field 𝑬 = −(𝑃/3𝜀o)𝒙�. 

There is no relativistically-induced magnetic dipole in this problem, as the electric dipole is 
oriented along its direction of motion. The dipole does have an internal E field, however, as 
shown in Fig.2(b). In its rest frame, a uniformly-polarized sphere of polarization 𝑃𝒙� is known to 
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have a uniform internal field 𝑬 = −(𝑃/3𝜀o)𝒙� [60]. Therefore, in the xyz frame, the internal field 
of the dipole is 𝑬(𝒓, 𝑡) = −(𝑝0/3𝜀o)𝛿[𝛾(𝑥 − 𝑉𝑡)]𝛿(𝑦)𝛿(𝑧)𝒙�. The total E field within the dipole 
is the sum of the external field, produced by the charged wire, and the above internal or self-
field. The stored E field energy-density inside the dipole, ½𝜀o|𝑬int + 𝑬ext|2, thus has three 
terms of which only the cross-term, 𝜀o𝑬int ∙ 𝑬ext, is relevant to the present discussion. 
Integration over the volume of the dipole thus yields 

 ℰ(𝑡) = ∭ 𝜀o𝑬int ∙ 𝑬ext d𝑥d𝑦d𝑧∞
−∞  

 = −∭ 𝜀o
𝜆0

2𝜋𝜀o(𝑥+𝑥0)
� 𝑝0
3𝜀o
� 𝛿[𝛾(𝑥 − 𝑉𝑡)]𝛿(𝑦)𝛿(𝑧)d𝑥d𝑦d𝑧 = − 𝜆0𝑝0

6𝜋𝜀o𝛾(𝑥0+𝑉𝑡) .∞
−∞  (38) 

The time-rate-of-change of the stored energy inside the dipole is thus 𝜆0𝑝0𝑉/[6𝜋𝜀o𝛾(𝑥0 + 𝑉𝑡)2]. 
To this we must add, in accordance with Eq.(6) (Lorentz) or Eq.(9) (Einstein-Laub), the time-
rate of energy exchange between the external E field and the dipole, that is, 

 ∭ 𝑬∞
−∞ ∙ 𝜕𝑷

𝜕𝑡
d𝑥d𝑦d𝑧 = −∭ 𝜆0𝑝0𝑉𝛿′(𝑥−𝑉𝑡)𝛿(𝑦)𝛿(𝑧)

2𝜋𝜀o𝛾(𝑥+𝑥0) d𝑥d𝑦d𝑧 = − 𝜆0𝑝0𝑉
2𝜋𝜀o𝛾(𝑥0+𝑉𝑡)2 .∞

−∞  (39) 

Consequently, the total rate of delivery of EM energy from the external world to the dipole 
(in both the Lorentz and Einstein-Laub formulations) is 

 dℰ(𝑡)
d𝑡

= − 𝜆0𝑝0𝑉
3𝜋𝜀o𝛾(𝑥0+𝑉𝑡)2 . (40) 

Now, in the Einstein-Laub formalism, the force exerted on the dipole is given by 

 𝑭(𝑡) = ∭ (𝑷 ∙ 𝜵)𝑬(𝒓, 𝑡)d𝑥d𝑦d𝑧∞
−∞ = − 𝜆0𝑝0𝒙�

2𝜋𝜀o𝛾(𝑥0+𝑉𝑡)2 . (41) 

The same expression for the force on the dipole is obtained in the Lorentz formalism as well. In 
the present problem, since no EM momentum resides within the dipole, the total rate of delivery 
of momentum from the outside world to the dipole is the force 𝑭(𝑡) given by Eq.(41). Invoking 
Eq.(34), we find 
 d�𝔪o𝑐2�

d𝑡
= 𝜆0𝑝0𝑉

6𝜋𝜀o(𝑥0+𝑉𝑡)2. (42) 

This change in the particle’s rest-mass 𝔪o as it moves along the x-axis is brought about by 
interference between the internal E field of the dipole and the external E field produced by the 
charged wire. In any practical situation, the above change in 𝔪o may or may not be large enough 
to be measurable. Nevertheless, from a theoretical standpoint, the consistency of the classical 
laws of force and energy demands that 𝔪o vary with time in accordance with Eq.(42). The 
present example has also shown that both the Lorentz and Einstein-Laub formulations predict 
identical behavior for the rest-mass of a permanent electric dipole traveling in an external E field. 

The subtle difference in how Eq.(34) is applied to a moving point-charge in Sec.8 and to the 
moving point-dipole in the present section requires some explanation. The terms appearing on 
the right-hand-side of Eq.(34), aside from 𝛾 and 𝑽𝑝, which in the present examples are assumed 
to be essentially constant, are dℰ/d𝑡 and 𝑭ext = d𝓟/d𝑡. We thus need to calculate the rates at 
which EM energy ℰ(𝑡) and EM momentum 𝓟(𝑡) enter or exit through the surface immediately 
surrounding the particle. This may be done by integrating the Poynting vector 𝑺(𝒓, 𝑡) and the 
stress tensor �⃖��⃗ (𝒓, 𝑡) over the surrounding surface. The task is substantially simplified, however, 
if we use Eqs.(6) and (9) (Poynting’s theorem) and Eqs.(14) and (16) (momentum conservation 
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law) to replace the surface integrals with integrals over the volume of the particle. (See Appendix 
B for further discussion.) 

The requisite volume integrals often involve the squared amplitude of an individual field, or 
the squared sum of two field amplitudes, or the dot- and cross-products of two different fields 
inside the volume of the particle. We are thus left with terms that contain the squared internal 
field of the dipole, the squared external field, and the cross-term between an internal field and an 
external field. Of these, only the cross-terms contribute to dℰ/d𝑡 and d𝓟/d𝑡, as the internal 
fields are time-independent, while the external fields are too small to survive after being 
multiplied by the (minuscule) volume of a point-dipole. In contrast, the cross-terms have both the 
time-dependence of the external field and the “giant” magnitude of the internal field to survive 
integration over the small volume followed by differentiation with respect to time. The surviving 
cross-terms then contribute to the time-rate-of-change of energy and momentum associated with 
a point-dipole. The cross-terms fail to survive, however, in the case of a point-charge. 

10. Magnetic point-dipole traveling in the H-field of a current-carrying wire. Our third 
example examines a permanent magnetic dipole in the process of exchanging energy and 
momentum with a static, nonuniform external H field. Both the kinetic energy and the rest-mass 
of the dipole will be seen to change as a result of this interaction. Although the Lorentz and 
Einstein-Laub formalisms in the present example exhibit substantial differences in the 
intermediate steps, the final results turn out to be the same. 
 
 
 
 
 
 
 
 
 
 

Fig.3. (a) A magnetic point-dipole 𝑚0𝒚� travels at a constant velocity V along the x-axis. The 
external H-field is produced by a long, straight wire carrying a constant current I0. The wire is 
parallel to the z-axis and crosses the xy-plane at (x, y) = (−x0, 0). (b) Magnified view of the interior 
of the point-dipole. In its rest frame, the uniformly-magnetized sphere of magnetization 𝑀𝒚� has a 
uniform internal field 𝑯 = −(𝑀/3𝜇o)𝒚�.      

Figure 3(a) shows an infinitely long, straight wire, carrying the constant current 𝐼0 parallel 
to the z-axis. The wire crosses the xy-plane at (𝑥,𝑦) = (−𝑥0, 0). In a cylindrical coordinate 
system centered on the wire, the magnetic field thus produced is 

 𝑯(𝒓, 𝑡) = (𝐼0/2𝜋𝑟)𝝓� . (43) 

Let a massive magnetic point-dipole 𝑚0𝒚�, accompanied by a relativistically-induced electric 
point-dipole 𝑝0𝒛�, travel at the constant velocity V along the x-axis. The magnetization and 
polarization of the dipole-pair may be written as 

 𝑴(𝒓, 𝑡) = 𝛾𝑚0𝛿[𝛾(𝑥 − 𝑉𝑡)]𝛿(𝑦)𝛿(𝑧)𝒚�, (44a) 

 𝑷(𝒓, 𝑡) = 𝛾𝜀o𝑚0𝑉𝛿[𝛾(𝑥 − 𝑉𝑡)]𝛿(𝑦)𝛿(𝑧)𝒛�. (44b) 
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If we allow a small solid sphere to represent the original point-dipole 𝒎0, the internal H-
field in the dipole’s rest-frame will be 𝑯int = −(𝑚0/3𝜇o)𝛿(𝑥′)𝛿(𝑦′)𝛿(𝑧′)𝒚′� . A Lorentz 
transformation to the xyz frame then yields the fields internal to the spherical volume as follows: 

 𝑬int(𝒓, 𝑡) = −(2𝑚0𝑉/3)𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝒛�, (45a) 

 𝑫int(𝒓, 𝑡) = (𝜀o𝑚0𝑉/3)𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝒛�, (45b) 

 𝑩int(𝒓, 𝑡) = (2𝑚0/3)𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝒚�, (45c) 

 𝑯int(𝒓, 𝑡) = −(𝑚0/3𝜇o)𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝒚�. (45d) 
It is interesting to note that the internal E and D fields are not the same as those expected 

from a true (as opposed to relativistically-induced) permanent dipole 𝒑0 = 𝑝0𝒛�. 
In the Einstein-Laub formalism, the force-density on the dipole-pair is evaluated as follows: 

 𝑭𝐸𝐿(𝒓, 𝑡) = 𝑚0𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧) 𝜕
𝜕𝑦

𝐼0[(𝑥+𝑥0)𝒚�−𝑦𝒙�]
2𝜋[(𝑥+𝑥0)2+𝑦2]�𝑦=0

 

 −𝜀o𝑚0𝑉2𝛿′(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝒛� × 𝜇o𝐼0𝒚�/[2𝜋(𝑥 + 𝑥0)] 

 = − 𝑚0𝐼0
2𝜋(𝑥+𝑥0)2 𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝒙� + 𝑚0𝐼0(𝑉/𝑐)2

2𝜋(𝑥+𝑥0) 𝛿
′(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝒙�. (46) 

Integration over the volume of the dipole yields 

 𝑭𝐸𝐿(𝑡) = − 𝑚0𝐼0𝒙�
2𝜋𝛾2(𝑥0+𝑉𝑡)2. (47) 

The internal EM momentum of the dipole is given by 

 𝓟𝐸𝐿
(EM) = 1

𝑐2∭ [−⅔𝑚0𝑉𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝒛�] × 𝐼0𝒚�
2𝜋(𝑥+𝑥0)

d𝑥d𝑦d𝑧∞
−∞ = 𝑚0𝐼0𝑉𝒙�

3𝜋𝑐2(𝑥0+𝑉𝑡)
. (48) 

The time-rate-of-change of the above internal momentum is –𝑚0𝐼0𝑉2𝒙�/[3𝜋𝑐2(𝑥0 + 𝑉𝑡)2], 
which must be added to 𝑭𝐸𝐿(𝑡) of Eq.(47) to yield the total rate-of-change of the momentum 
transferred from the external world to the dipole-pair. We find 

 𝑭𝐸𝐿(𝑡) + d𝓟𝐸𝐿
(EM)

d𝑡
= −𝑚0𝐼0�1−𝑉2/3𝑐2�𝒙�

2𝜋(𝑥0+𝑉𝑡)2 . (49) 

With reference to Eq.(16), note that Eq.(49) yields the total rate of transfer of linear 
momentum from the outside world to the moving dipole-pair. In other words, by adding up the 
force and the time-rate-of-change of the internal momentum, we have essentially evaluated the 
integral of the stress tensor �⃖��⃗ 𝐸𝐿(𝒓, 𝑡) over a closed surface surrounding the moving dipole-pair. 
This is what we are going to substitute later on for 𝑭ext(𝑡) in Eq.(34). We follow a similar 
procedure to calculate the total rate of transfer of energy from the outside world to the dipole-
pair. With reference to Eq.(12), the energy exchange rate between the field and the dipole-pair is 

 dℰ𝐸𝐿
(exch)

d𝑡
= ∭ 𝑯 ∙ 𝜕𝑴

𝜕𝑡
d𝑥d𝑦d𝑧∞

−∞ = − 𝑚0𝐼0𝑉
2𝜋(𝑥0+𝑉𝑡)2 . (50) 

The relevant part of the internal energy of the dipole, produced by interference between 𝑯ext 
and 𝑯int (i.e., the cross-term), is given by 

 −∭ 𝜇o{𝐼0/[2𝜋(𝑥 + 𝑥0)]}(𝑚0/3𝜇o)𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)d𝑥d𝑦d𝑧∞
−∞ = − 𝑚0𝐼0

6𝜋(𝑥0+𝑉𝑡)
. (51) 
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Differentiating the above expression with respect to time yields 𝑚0𝐼0𝑉/[6𝜋(𝑥0 + 𝑉𝑡)2] for the 
time-rate-of-change of the internal energy of the dipole. Adding this to the energy exchange rate 
in Eq.(50), we find 
 dℰ𝐸𝐿(𝑡)

d𝑡
= − 𝑚0𝐼0𝑉

3𝜋(𝑥0+𝑉𝑡)2 
. (52) 

With reference to Eq.(9), note that Eq.(52) gives the total rate of transfer of energy from the 
outside world to the moving dipole-pair. In other words, by adding the time-rate-of-change of the 
internally stored energy to the energy exchange rate, we have essentially evaluated the integral of 
the Poynting vector 𝑺𝐸𝐿(𝒓, 𝑡) over a closed surface surrounding the moving dipole-pair. For the 
present problem, this constitutes the term dℰ(𝑡)/d𝑡 to be used in Eq.(34). Substitution from 
Eqs.(49) and (52) into Eq.(34) thus yields 

 d�𝔪o𝑐2�
d𝑡

= 𝑚0𝐼0𝑉
6𝜋𝛾(𝑥0+𝑉𝑡)2 

. (53) 

This time-dependence of the particle’s rest-mass as it travels along the x-axis is associated 
with interference between the internal H-field of the magnetic dipole and the external H-field 
produced by the long wire depicted in Fig.3. 

Next we repeat the same procedures in the Lorentz formalism. The force on the dipole-pair 
is evaluated as follows: 

 𝑭𝐿(𝑡) = ∭ (𝜇o−1𝜵 × 𝑴 + 𝜕𝑷/𝜕𝑡) × 𝑩d𝑥d𝑦d𝑧∞
−∞ = − 𝑚0𝐼0𝒙�

2𝜋𝛾2(𝑥0+𝑉𝑡)2 
. (54) 

This is precisely the same force as obtained in Eq.(47) using the Einstein-Laub formula. 
Also, the time-dependent part of the internal EM momentum of the dipole remains the same as 
that in Eq.(48)—because the contribution of 𝜀o𝑬 × 𝑴 is time-independent. Therefore, Eq.(49) 
remains the same in the two formalisms. 

In the Lorentz formulation, the rate of energy exchange between the field and the dipoles is 
zero, as this rate is given by ∭ 𝑬 ∙ (𝜇o−1𝜵× 𝑴 + 𝜕𝑷/𝜕𝑡)d𝑥d𝑦d𝑧∞

−∞ , and the system of Fig.3 lacks 
an external E-field. However, the stored (internal) energy of the dipoles, produced by 
interference between 𝑩ext and  𝑩int (the cross-term) is now given by 

 ℰ𝐿(𝑡) = ∭ 𝜇o−1 �
𝜇o𝐼0

2𝜋(𝑥+𝑥0)� [⅔𝑚0𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)]d𝑥d𝑦d𝑧∞
−∞ = 𝑚0𝐼0

3𝜋(𝑥0+𝑉𝑡)
. (55) 

It is seen that the rate of delivery of EM energy from the external world to the dipole-pair, 
obtained by differentiating Eq.(55) with respect to time, is the same as that given by Eq.(52). 
Consequently, the time-rate-of-change of the rest-mass 𝔪o is the same as that given by Eq.(53). 
Once again, the predictions of the two formulations are seen to be identical. We emphasize that, 
quite aside from the question of whether in a practical setting the change of 𝔪o would be large 
enough to be measureable, from a theoretical standpoint, the consistency of the classical laws of 
force and energy demands that 𝔪o vary with time in accordance with Eq.(53). The physical basis 
for the variation of 𝔪o is, of course, the interference between the internal magnetic field of the 
dipole depicted in Fig.3(b) and the externally applied magnetic field. 
 
11. Standing wave acting on an electric dipole. In this example we consider a standing EM 
wave confined between two perfectly conducting parallel plates located at z = ±½d, as shown in 
Fig.4. The E and H fields of the wave, which is linearly polarized along the x-axis, are given by 
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 𝑬(𝒓, 𝑡) = 𝐸0 sin(𝑘0𝑧) cos(𝜔𝑡)𝒙�, (56a) 

 𝑯(𝒓, 𝑡) = −(𝐸0/𝑍o) cos(𝑘0𝑧) sin(𝜔𝑡)𝒚�. (56b) 

In the above expressions, 𝜔 is the angular frequency of the monochromatic wave, 𝑘0 =
𝜔/𝑐 = 2𝜋/𝜆 is the wavenumber, 𝜆 is the vacuum wavelength, 𝑍o = �𝜇o/𝜀o is the impedance of 
free space, and 𝑐 = 1/�𝜇o𝜀o is the speed of light in vacuum. Since, at the surface of the 
conducting plates, the E-field must vanish, we have 𝑑 = 𝑚𝜆, where m is an arbitrary positive 
integer. The surface-current-density on the inner facets of the conducting plates is, therefore, 
given by the magnitude of the H-field in the immediate vicinity of the plates, namely, 

  𝑱𝑠 = ±(𝐸0/𝑍o)sin (𝜔𝑡)𝒙�.  (57) 
Here the plus and minus signs represent the upper and lower plates (not necessarily in that 

order), with the upper plate having the plus (minus) sign when m is an odd (even) integer. The 
stored EM energy (per unit area of the xy-plane) is readily found to be 

 ℰtotal = ∫ (½𝜀o𝑬 ∙ 𝑬 + ½𝜇o𝑯 ∙ 𝑯)d𝑧½𝑑
−½𝑑 = ¼𝜀o𝐸02𝑑. (58) 

In what follows, we shall find that the total energy of the system remains constant at all 
times. A fraction of the field energy given in Eq.(58) will be exchanged with a point-dipole that 
will be introduced into the cavity, but no new energy enters, nor any existing energy leaves the 
system. When an E-field is found to act upon the surface currents Js, or when new currents are 
induced in the conducting plates, the symmetry of the problem will be such that the integral of 
E·J over the surface of each plate will remain zero at all times. In other words, no EM energy 
can enter or exit the system through these plates. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. A monochromatic standing-wave resides in the space between two perfectly conducting 
plates. While the E-field has a null in the central xy-plane, the H-field has a peak in that plane. The 
surface currents Js sustain the standing wave. An electric point-dipole 𝒑0 = 𝑝0𝒛�  moves along the 
x-axis at a constant velocity V, giving rise to a relativistically-induced magnetic dipole 𝒎0 = 𝑚0𝒚�. 

Let a permanent electric point-dipole 𝒑0 = 𝑝0𝒛�, whose magnitude and orientation remain 
fixed in space-time, move at a constant velocity V along the x-axis, as shown in Fig.4. The 
relativistically induced magnetic point-dipole which accompanies 𝒑0 will then be 𝒎0 = 𝜇o𝑝0𝑉𝒚�. 
The polarization and magnetization associated with this moving dipole-pair are given by 

 𝑷(𝒓, 𝑡) = 𝛾𝑝0𝛿[𝛾(𝑥 − 𝑉𝑡)]𝛿(𝑦)𝛿(𝑧)𝒛�, (59a) 

 𝑴(𝒓, 𝑡) = 𝛾𝜇o𝑝0𝑉𝛿[𝛾(𝑥 − 𝑉𝑡)]𝛿(𝑦)𝛿(𝑧)𝒚�. (59b) 

Allowing a small solid sphere to represent the original point-dipole 𝒑0, we find the internal 
E-field in the dipole’s rest frame to be 𝑬int = −(𝑝0/3𝜀o)𝛿(𝑥′)𝛿(𝑦′)𝛿(𝑧′)𝒛′� . Lorentz 
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transformation to the xyz frame then yields the internal fields (i.e., fields within the spherical 
volume) as follows: 
 𝑬int(𝒓, 𝑡) = −(𝑝0/3𝜀o)𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝒛�, (60a) 

 𝑫int(𝒓, 𝑡) = (2𝑝0/3)𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝒛�, (60b) 

 𝑩int(𝒓, 𝑡) = (𝜇o𝑝0𝑉/3)𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝒚�, (60c) 

 𝑯int(𝒓, 𝑡) = −(2𝑝0𝑉/3)𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝒚�. (60d) 
It is interesting to note that the internal B and H fields are not the same as those expected 

from a true (as opposed to relativistically-induced) permanent dipole 𝒎0 = 𝑚0𝒚�. 

11.1. Force and energy in the Einstein-Laub formalism. The force exerted on the dipole-pair 
depicted in Fig.4 may be calculated in accordance with the Einstein-Laub theory as follows: 

 𝑭𝐸𝐿(𝒓, 𝑡) = (𝑷 ∙ 𝜵)𝑬 + (𝜕𝑷/𝜕𝑡) × 𝜇o𝑯 + (𝑴 ∙ 𝜵)𝑯− (𝜕𝑴/𝜕𝑡) × 𝜀o𝑬 

 = 𝑝0𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝐸0𝑘0 cos(𝑘0𝑧) cos(𝜔𝑡)𝒙�  

 −(𝑉/𝑐)𝑝0𝛿′(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝐸0 cos(𝑘0𝑧) sin(𝜔𝑡) 𝒙�  

 −(𝑉2/𝑐2)𝑝0𝛿′(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝐸0 sin(𝑘0𝑧) cos(𝜔𝑡) 𝒛�. (61) 
Integration over the dipole volume yields the following total force on the moving dipole-pair: 

 𝑭𝐸𝐿(𝑡) = 𝑝0𝑘0𝐸0 cos(𝜔𝑡)𝒙�. (62) 
There is also the internal EM momentum of the dipole, whose density is given by 

 𝓹𝐸𝐿
(EM)(𝒓, 𝑡) = 𝑬int × 𝑯/𝑐2 = −(𝑝0/3𝑐)𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝐸0 cos(𝑘0𝑧) sin(𝜔𝑡)𝒙�. (63) 

Differentiation with respect to time, followed by integration over the volume of the dipole, 
yields the corresponding force experienced by the dipole as 

 𝑭int(𝑡) = −1
3
𝑝0𝑘0𝐸0 cos(𝜔𝑡) 𝒙�. (64) 

Adding this result to the force expression of Eq.(62), one finds the net force acting on the 
dipole to be ⅔𝑭𝐸𝐿(𝑡). Next, we calculate the rate of exchange of energy between the fields and 
the dipoles: 

 𝜕ℰ𝐸𝐿
𝜕𝑡

= 𝑬 ∙ 𝜕𝑷
𝜕𝑡

+ 𝑯 ∙ 𝜕𝑴
𝜕𝑡

= (𝑉2/𝑐)𝑝0𝐸0 cos(𝑘0𝑧) sin(𝜔𝑡) 𝛿′(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧). (65) 

The above expression integrates to zero over the volume of the dipoles. Despite the fact that 
the EM field continually exerts a force on the dipole pair, no energy appears to have been 
exchanged between the field and the dipoles. However, the internal energy-density of the dipole 
pair, may be evaluated as follows: 

 ℰ𝐸𝐿
(int)(𝒓, 𝑡) = 1

2
𝜀o𝐸2 + 1

2
𝜇o𝐻2 

 = 1
2
𝜀o �

1
3
𝑝0𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)�

2
 

 + 1
2
𝜇o �

2
3
𝑉𝑝0𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧) + (𝐸0/𝑍o) cos(𝑘0𝑧) sin(𝜔𝑡)�

2
. (66) 
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Emphasizing the crucial contribution to the above expression arising from interference between 
the internal and external H fields, we may ignore the constant or insignificant terms and rewrite 
Eq.(66) as 
 ℰ𝐸𝐿

(int)(𝒓, 𝑡) = 2
3

(𝑉/𝑐)𝐸0𝑝0𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧) cos(𝑘0𝑧) sin(𝜔𝑡) + Inconsequential terms.  (67) 

Differentiation with respect to time, followed by integration over the volume of the dipole-pair 
now yields 

 ∭
𝜕ℰ𝐸𝐿

(int)

𝜕𝑡
d𝑥d𝑦d𝑧∞

−∞ = 2
3
𝑉𝑝0𝑘0𝐸0 cos(𝜔𝑡).  (68) 

This is the same as the rate of injection of energy into the dipole-pair by the net force 
⅔𝑭𝐸𝐿(𝑡) obtained earlier. Invoking Eq.(34), we conclude that the rest-mass 𝔪o of the point-
dipole in the present example remains constant. Thus, when the fields inside a dipole carry their 
own momentum, it is possible for the force and energy laws to remain consistent with each other 
without requiring a concomitant change in the rest mass 𝔪o of the dipole. 

11.2. Force and energy in the Lorentz formalism. Next, we compute the force exerted on the 
dipole-pair in the system of Fig.4 using the Lorentz formulation, namely, 

 𝑭𝐿(𝒓, 𝑡) = −(𝜵 ∙ 𝑷)𝑬 + (𝜕𝑷/𝜕𝑡 + 𝜇o−1𝜵 × 𝑀) × 𝑩 

 = −𝑝0𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿′(𝑧)𝐸0 sin(𝑘0𝑧) cos(𝜔𝑡) 𝒙� 

 +(𝑉/𝑐)𝑝0𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿′(𝑧)𝐸0 cos(𝑘0𝑧) sin(𝜔𝑡) 𝒛�. (69) 
Integration over the dipole volume yields the total Lorentz force as 

 𝑭𝐿(𝑡) = 𝑝0𝑘0𝐸0 cos(𝜔𝑡)𝒙�. (70) 

This is the same as the Einstein-Laub force experienced by the dipole pair; see Eq.(62). 
Combining this force with the internal force 𝑭int(𝑡) of Eq.(64) yields the net force as ⅔𝑭𝐿(𝑡), as 
before. [Strictly speaking, the internal momentum density of the dipole in the Lorentz formalism 
is 𝜀o𝑬int × 𝑩 = 𝜀o𝑬int × (𝜇o𝑯ext + 𝑩int). However, the contribution of Bint to the internal 
momentum is time-independent and can, therefore, be ignored.]  

The rate of transfer of energy from the field to the dipoles in the Lorentz formulation is 
readily found to be 

 𝜕ℰ𝐿
𝜕𝑡

= 𝑬 ∙ �𝜕𝑷
𝜕𝑡

+ 𝜇o−1𝜵 × 𝑀� 

 = −𝑉𝑝0𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿′(𝑧)𝐸0 sin(𝑘0𝑧) cos(𝜔𝑡). (71) 

Integration over the volume of the dipoles yields 

 ∭ 𝜕ℰ𝐿
𝜕𝑡

d𝑥d𝑦d𝑧∞
−∞ = 𝑉𝑝0𝑘0𝐸0 cos(𝜔𝑡). (72) 

Moreover, the internal energy-density of the dipole-pair is given by 

 ℰ𝐿
(int) = 1

2
𝜀o𝐸2 + 1

2
𝜇o−1𝐵2 

 = 1
2
𝜀o �

1
3
𝑝0𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)�

2
 

 + 1
2
𝜇o−1 �

1
3
𝑉𝜇o𝑝0𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧) − 𝜇o(𝐸0/𝑍o) cos(𝑘0𝑧) sin(𝜔𝑡)�

2
. (73) 
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Emphasizing the crucial contribution to the above expression arising from interference between 
the internal and external B fields, we may once again ignore the constant or insignificant terms 
and rewrite Eq.(73) as 

 ℰ𝐿
(int) = −1

3
(𝑉/𝑐)𝑝0𝐸0𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧) cos(𝑘0𝑧) sin(𝜔𝑡) + Inconsequential terms. (74) 

Differentiation with respect to time, followed by integration over the dipole volume now yields 

 ∭
𝜕ℰ𝐿

(int)

𝜕𝑡
d𝑥d𝑦d𝑧∞

−∞ = −1
3
𝑉𝑝0𝑘0𝐸0 cos(𝜔𝑡).  (75) 

The sum of Eqs.(72) and (75) coincides with Eq.(68). Therefore, the energy transfer rate 
from the external world to the moving dipole is the same in both formulations. Once again, 
invoking Eq.(34) in conjunction with the sum of Eqs.(72) and (75) and with the fact that the net 
force acting on the dipole is ⅔ of 𝑭𝐿(𝑡) of Eq.(70), we find that the rest-mass 𝔪o of the point-
dipole remains constant. 
 
12. Standing wave acting on a magnetic dipole. We now consider a slightly different EM wave 
between two parallel plates located at z = ±½d, as shown in Fig.5. The E and H fields of the 
wave, which is now linearly polarized along the y-axis, are given by 

 𝑯(𝒓, 𝑡) = (𝐸0/𝑍o) sin(𝑘0𝑧) sin(𝜔𝑡)𝒙�, (76a) 

 𝑬(𝒓, 𝑡) = −𝐸0 cos(𝑘0𝑧) cos(𝜔𝑡)𝒚�. (76b) 

Since, at the surface of the conducting plates, the E-field must vanish, we have 𝑑 = (𝑚 −
½)𝜆, where m is an arbitrary positive integer. The surface-current-density on the inner facets of 
the conducting plates is, therefore, given by the magnitude of the H-field in the immediate 
vicinity of the plates, namely, 
  𝑱𝑠 = ±(𝐸0/𝑍o)sin (𝜔𝑡)𝒚�.  (77) 

Here the surface currents of both upper and lower plates have the same sign, with the plus 
(minus) sign corresponding to the case of m being an even (odd) integer. The EM energy per unit 
area of the xy-plane remains the same as that in the system of Fig.4, namely, ℰtotal = ¼𝜀o𝐸02𝑑. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5. A monochromatic standing-wave resides in the space between two perfectly conducting 
plates. While the E-field peaks in the central xy-plane, the H-field has a null in that plane. The 
surface currents Js sustain the standing wave. A magnetic point-dipole 𝒎0 = 𝑚0𝒛� travels along the 
x-axis at a constant velocity V, giving rise to a relativistically-induced electric dipole 𝒑0 = 𝑝0𝒚�. 

Next, we assume a magnetic point-dipole 𝒎0 = 𝑚0𝒛� travels at constant velocity V along the 
x-axis in the xy-plane of the system of Fig.5. The induced electric dipole will now be 𝒑0 = 𝑝0𝒚,�  
and the magnetization and polarization as functions of the space-time coordinates will be 

 

x y 

z 

× 

m0 
V 

Js 

Js 

d 

· · · · · 

· · · · · 

Hx 
Ey 

· 

· 

  

  

  

  

  

  

 

  

  

  

  

  

20 
 



 𝑴(𝒓, 𝑡) = 𝛾𝑚0𝛿[𝛾(𝑥 − 𝑉𝑡)]𝛿(𝑦)𝛿(𝑧)𝒛�, (78a) 

 𝑷(𝒓, 𝑡) = −𝛾𝜀o𝑚0𝑉𝛿[𝛾(𝑥 − 𝑉𝑡)]𝛿(𝑦)𝛿(𝑧)𝒚�. (78b) 

Allowing a small solid sphere to represent the original point-dipole 𝒎0, we find the internal 
H-field in the dipole’s rest frame to be 𝑯int = −(𝑚0/3𝜇o)𝛿(𝑥′)𝛿(𝑦′)𝛿(𝑧′)𝒛′� . A Lorentz 
transformation to the xyz frame then yields the fields internal to the spherical volume as follows: 

 𝑬int(𝒓, 𝑡) = (2𝑚0𝑉/3)𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝒚�, (79a) 

 𝑫int(𝒓, 𝑡) = −(𝜀o𝑚0𝑉/3)𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝒚�, (79b) 

 𝑩int(𝒓, 𝑡) = (2𝑚0/3)𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝒛�, (79c) 

 𝑯int(𝒓, 𝑡) = −(𝑚0/3𝜇o)𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝒛�. (79d) 
Note, once again, that the internal E and D fields are not the same as those expected from a 

true (as opposed to relativistically-induced) permanent dipole 𝒑0 = 𝑝0𝒚�. 

12.1. Force and energy of magnetic dipole in the Einstein-Laub formalism. The force-
density exerted on the moving dipole-pair is given by 

 𝑭𝐸𝐿(𝒓, 𝑡) = −𝑚0(𝑉/𝑐)2(𝐸0/𝑍o)𝛿′(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧) sin(𝑘0𝑧) sin(𝜔𝑡) 𝒛� 

 +𝑚0𝑘0(𝐸0/𝑍o)𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧) cos(𝑘0𝑧) sin(𝜔𝑡)𝒙� 

 +𝜀o𝑚0𝑉𝐸0𝛿′(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧) cos(𝑘0𝑧) cos(𝜔𝑡)𝒙�. (80) 
Integration over the volume of the dipole-pair now yields the net Einstein-Laub force as follows: 

 𝑭𝐸𝐿(𝑡) = 𝑚0𝑘0(𝐸0/𝑍o) sin(𝜔𝑡)𝒙�. (81) 
The internal EM momentum density of the dipole pair is given by 

 𝓹𝐸𝐿
(EM)(𝒓, 𝑡) = 𝑬 × 𝑯int/𝑐2 = 1

3
𝜀o𝑚0𝐸0 cos(𝑘0𝑧) cos(𝜔𝑡) 𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝒙�. (82) 

Differentiation with respect to time, followed by integration over the volume of the dipole-
pair yields  

 𝑭𝐸𝐿
(int)(𝑡) = −1

3
𝑚0𝑘0(𝐸0/𝑍o) sin(𝜔𝑡)𝒙�. (83) 

The net force experienced by the moving dipole-pair is, therefore, ⅔𝑭𝐸𝐿(𝑡). The rate of 
exchange of EM energy between the field and the dipole-pair is given by 

 𝜕ℰ𝐸𝐿
(exch)(𝒓,𝑡)
𝜕𝑡

= ∭ �𝑬 ∙ 𝜕𝑷
𝜕𝑡

+ 𝑯 ∙ 𝜕𝑴
𝜕𝑡
� d𝑥d𝑦d𝑧∞

−∞  

 = −∭ 𝜀o𝑚0𝐸0𝑉2 cos(𝑘0𝑧) cos(𝜔𝑡) 𝛿′(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)d𝑥d𝑦d𝑧∞
−∞ = 0. (84) 

The stored energy-density inside the dipole pair is given by 

 ℰ𝐸𝐿
(int)(𝒓, 𝑡) = 1

2
𝜀o𝐸2 + 1

2
𝜇o𝐻2 

 = 1
2
𝜀o �

2
3
𝑚0𝑉𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧) − 𝐸0 cos(𝑘0𝑧) cos(𝜔𝑡)�

2
 

 + 1
2
𝜇o ���

𝑚0
3𝜇o

� 𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)�
2

+ ��𝐸0
𝑍o
� sin(𝑘0𝑧) sin(𝜔𝑡)�

2
�. (85) 
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Dropping the insignificant and constant terms from the above equation, differentiating with 
respect to time, then integrating over the volume of the dipole-pair, we find 

 ∭
𝜕ℰ𝐸𝐿

(int)(𝒓,𝑡)
𝜕𝑡

d𝑥d𝑦d𝑧∞
−∞ = ∭ 2

3
𝜀o𝑚0𝐸0𝜔𝑉𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧) cos(𝑘0𝑧) sin(𝜔𝑡)∞

−∞ d𝑥d𝑦d𝑧 

 = 2
3
𝑚0𝑘0(𝐸0/𝑍o)𝑉 sin(𝜔𝑡). (86) 

This is the same as the net force exerted on the dipole-pair multiplied by the dipole velocity 
V. Invoking Eq.(34), we conclude that the rest-mass 𝔪0 of the dipole remains constant. As was 
the case in the preceding example, it is seen once again that when a dipole carries some EM 
momentum in its interior region, it is possible for the force and energy laws to remain consistent 
with each other without requiring a concomitant change in the rest mass 𝔪o of the dipole. 
 
12.2. Force and energy of magnetic dipole in the Lorentz formalism. We now repeat the 
calculations of the preceding subsection in the Lorentz formalism, where the force-density on the 
dipole-pair is given by 

 𝑭𝐿(𝒓, 𝑡) = −𝜀o𝑚0𝑉𝐸0𝛿(𝑥 − 𝑉𝑡)𝛿′(𝑦)𝛿(𝑧) cos(𝑘0𝑧) cos(𝜔𝑡)𝒚� 

 +𝑚0(𝐸0/𝑍o)(1 − 𝑉2/𝑐2)𝛿′(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧) sin(𝑘0𝑧) sin(𝜔𝑡) 𝒛�. (87) 
Integration over the volume of the dipole-pair yields a net Lorentz force of zero on the 

traveling pair. Next, we evaluate the internal EM momentum in the Lorentz formalism, as 
follows: 
 𝓹𝐿

(EM) = 𝜀o𝑬 × 𝑩int = −2
3
𝜀o𝑚0𝐸0 cos(𝑘0𝑧) cos(𝜔𝑡) 𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)𝒙�. (88) 

Differentiation with respect to time, followed by integration over the dipole volume, yields 

 𝑭𝐿
(int) = ∭

𝜕𝓹𝐿
(EM)

𝜕𝑡
d𝑥d𝑦d𝑧∞

−∞ = 2
3
𝑚0𝑘0(𝐸0/𝑍o) sin(𝜔𝑡)𝒙�. (89) 

Since the Lorentz force of Eq.(87) turned out to be zero, the above internal force is the only 
contribution to the force exerted by the EM field on the dipole-pair. Comparison with Eqs.(81) 
and (83) confirms that the two methods predict the same net force on the traveling dipole-pair. 

Next we calculate the energy exchange rate between the field and the dipoles in the Lorentz 
formalism, namely, 

 𝜕ℰ𝐿
(exch)

𝜕𝑡
= 𝑬 ∙ �𝜕𝑷

𝜕𝑡
+ 𝜇o−1𝜵 × 𝑴� 

 = 𝜇o−1𝑚0𝐸0 cos(𝑘0𝑧) cos(𝜔𝑡) (1 − 𝑉2/𝑐2)𝛿′(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧). (90) 
Integrating the above expression over the dipole volume yields a net energy exchange rate of 

zero. The other source of EM energy is the stored energy within the dipole pair, namely, 

 ℰ𝐿
(int)(𝒓, 𝑡) = 1

2
𝜀o𝑬 ∙ 𝑬 + 1

2
𝜇o−1𝑩 ∙ 𝑩 = 

 = 1
2
𝜀o[⅔𝑚0𝑉𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧) − 𝐸0 cos(𝑘0𝑧) cos(𝜔𝑡)]2 

 + 1
2
𝜇o−1{[𝜇o(𝐸0/𝑍o) sin(𝑘0𝑧) sin(𝜔𝑡)]2 + [⅔𝑚0𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧)]2}  

 = −2
3
𝜀o𝑚0𝐸0 𝑉cos(𝑘0𝑧) cos(𝜔𝑡)𝛿(𝑥 − 𝑉𝑡)𝛿(𝑦)𝛿(𝑧) + Inconsequential terms. (91) 
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Differentiation with respect to time, followed by integration over space, yields the energy 
exchange rate between the field and the dipole-pair as 

 ∭
𝜕ℰ𝐿

(int)(𝒓,𝑡)
𝜕𝑡

d𝑥d𝑦d𝑧∞
−∞ = 2

3
𝑚0𝑘0(𝐸0/𝑍o)𝑉 sin(𝜔𝑡). (92) 

This is the same as the energy exchange rate in the Einstein-Laub formalism given by 
Eq.(86), confirming once again that the two formalisms predict exactly the same behavior. 
 
13. Slowly rotating electric dipole in an external E-field. Our sixth example pertains to a 
point-dipole 𝒑0 sitting at the origin of the coordinates and rotating around the y-axis at the slow 
angular velocity of 𝜔0. No relativistically-induced magnetization is produced by the rotating 
point-dipole. Moreover, the rotation rate is slow enough that radiation by the spinning dipole 
may be ignored. We express the polarization of the system as follows: 

 𝑷(𝒓, 𝑡) = 𝑝0[sin(𝜔0𝑡)𝒙� + cos(𝜔0𝑡) 𝒛�]𝛿(𝑥)𝛿(𝑦)𝛿(𝑧). (93) 
In the Einstein-Laub formalism, an externally applied uniform and constant electric field 

𝑬(𝒓, 𝑡) = 𝐸0𝒙� does not exert a force on the dipole, but its torque is given by 

 𝑻𝐸𝐿(𝑡) = ∭ 𝑷 × 𝑬d𝑥d𝑦d𝑧∞
−∞ = 𝐸0𝑝0 cos(𝜔0𝑡)𝒚�.  (94) 

The same torque is obtained in the Lorentz formulation, where  

 𝑻𝐿(𝑡) = ∭ 𝒓 × 𝑭𝐿(𝒓, 𝑡)d𝑥d𝑦d𝑧∞
−∞ = −∭ 𝒓 × (𝛁 ∙ 𝑷)𝑬d𝑥d𝑦d𝑧∞

−∞ = 𝐸0𝑝0 cos(𝜔0𝑡)𝒚�. (95) 

The energy exchanged between the field and the dipole is readily calculated, as follows: 

 dℰ(exch)(𝑡)
d𝑡

= ∭ 𝑬 ∙ (𝜕𝑷/𝜕𝑡)d𝑥d𝑦d𝑧∞
−∞ = 𝐸0𝑝0𝜔0 cos(𝜔0𝑡). (96) 

The E-field energy stored within the dipole is given by 
 ℰ(int)(𝑡) = ∭ ½𝜀o[𝐸0 − (𝑝0/3𝜀o) sin(𝜔0𝑡) 𝛿(𝑥)𝛿(𝑦)𝛿(𝑧)]2d𝑥d𝑦d𝑧∞

−∞  

 = −1
3
𝐸0𝑝0 sin(𝜔0𝑡) + Inconsequential terms. (97) 

Differentiating the above stored energy with respect to time yields −1
3
𝐸0𝑝0𝜔0 cos(𝜔0𝑡), 

which should be added to Eq.(96) to arrive at the dipole’s energy exchange rate with the external 
world, namely, 
 dℰ(𝑡)/d𝑡 = ⅔𝐸0𝑝0𝜔0 cos(𝜔0𝑡). (98) 

This rate of energy exchange between the dipole and the external world is only two thirds 
the product of 𝑻𝐸𝐿(𝑡) of Eq.(94) [or 𝑻𝐿(𝑡) of Eq.(95)] and the rotation rate 𝜔0 of the dipole. The 
inequality of dℰ(𝑡)/d𝑡 and 𝑻(𝑡) ∙ 𝝎 implies that the rest-mass of the dipole and, consequently, 
its moment of inertia, must vary with time. Unfortunately, the relativistic relations among the 
moment of inertia, angular velocity, (rotational) kinetic energy, angular momentum, and the rest 
mass are not straightforward, as they depend on the internal structure of the rotating particle. We 
cannot, therefore, offer a general equation similar to Eq.(34) to relate the energy imbalance 
(dℰ/d𝑡 − 𝑻 ∙ 𝝎) to the time-rate-of-change of the rest-mass (or moment of inertia) of a point-
dipole. Nevertheless, it is important to recognize the necessity of accounting for the variations of 
the rest-mass (and moment of inertia) in order to ensure the consistency of the laws of EM force 
and torque with those of EM energy. 
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14. Slowly rotating magnetic dipole in an external H-field. In this seventh and final example, 
we consider a permanent point-dipole 𝒎0 sitting at the origin of the coordinates and rotating 
around the y-axis at the slow angular velocity of 𝜔0. No relativistically-induced polarization is 
produced by the rotating point-dipole. Moreover, the rotation rate is slow enough that radiation 
by the spinning dipole may be ignored. We express the magnetization of the system as follows: 

 𝑴(𝒓, 𝑡) = 𝑚0[sin(𝜔0𝑡) 𝒙� + cos(𝜔0𝑡) 𝒛�]𝛿(𝑥)𝛿(𝑦)𝛿(𝑧). (99) 

A fundamental difference between the above magnetic dipole and the rotating electric dipole 
examined in the preceding section is that the magnetic dipole is always accompanied by an 
internal angular momentum along the axis of its magnetic dipole moment. A torque is thus 
needed to maintain the gyration of this angular momentum around the y-axis; a constant 
magnetic field in the y-direction will provide the needed (rotating) torque in the xz-plane. 
However, no energy is exchanged between the dipole and the magnetic field that is aligned with 
the y-axis. In contrast, a constant magnetic field along the x-axis will exchange energy with the 
rotating dipole while exerting a time-varying torque on the dipole along the y-axis. We shall 
assume that the dipole is properly harnessed to prevent its gyration around x, without interfering 
with its rotation around the y-axis. 

In the Einstein-Laub formalism, an externally applied uniform and constant magnetic field 
𝑯(𝒓, 𝑡) = 𝐻0𝒙� does not exert a force on the dipole, but its torque is given by 

 𝑻𝐸𝐿(𝑡) = ∭ 𝑴 × 𝑯d𝑥d𝑦d𝑧∞
−∞ = 𝐻0𝑚0 cos(𝜔0𝑡)𝒚�.  (100) 

Also in the same formalism, the energy exchanged between the field and the dipole is readily 
calculated, as follows: 

 ∭ 𝑯 ∙ (𝜕𝑴/𝜕𝑡)d𝑥d𝑦d𝑧∞
−∞ = 𝐻0𝑚0𝜔0 cos(𝜔0𝑡). (101) 

The H-field energy stored within the dipole is given by 

 ℰ𝐸𝐿
(int)(𝑡) = ∭ ½𝜇o[𝐻0 − (𝑚0/3𝜇o) sin(𝜔0𝑡) 𝛿(𝑥)𝛿(𝑦)𝛿(𝑧)]2d𝑥d𝑦d𝑧∞

−∞  

 = −1
3
𝐻0𝑚0 sin(𝜔0𝑡) + Inconsequential terms. (102) 

Differentiating the above stored energy with respect to time yields −1
3
𝐻0𝑚0𝜔0 cos(𝜔0𝑡), 

which should be added to Eq.(101) to arrive at the dipole’s energy exchange rate with the 
external world, namely, 

 dℰ𝐸𝐿(𝑡)/d𝑡 = ⅔𝐻0𝑚0𝜔0 cos(𝜔0𝑡). (103) 
Now, in the Lorentz formalism, the torque exerted by the H-field on the spinning magnetic 

dipole is computed as follows:  

 𝑻𝐿(𝑡) = ∭ 𝒓∞
−∞ × 𝑭𝐿(𝒓, 𝑡)d𝑥d𝑦d𝑧 = ∭ 𝒓∞

−∞ × [(𝜇o−1𝛁 × 𝑴) × 𝜇o𝑯]d𝑥d𝑦d𝑧 

 = 𝐻0𝑚0 cos(𝜔0𝑡)𝒚�. (104) 
The Lorentz torque is thus seen to be identical with the Einstein-Laub torque of Eq.(100). 

As for the energy exchange rate between the field and the dipole in the Lorentz formalism, we 
note that, since no external E-field acts on the dipole, the energy exchange rate 𝑬 ∙ 𝜇o−1𝜵 × 𝑴 
vanishes. However, the stored energy inside the dipole is now given by 
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 ℰ𝐿
(int)(𝑡) = ∭ ½𝜇o−1[𝜇o𝐻0 + (2𝑚0/3) sin(𝜔0𝑡) 𝛿(𝑥)𝛿(𝑦)𝛿(𝑧)]2d𝑥d𝑦d𝑧∞

−∞  

 = ⅔𝐻0𝑚0 sin(𝜔0𝑡) + Inconsequential terms. (105) 
Differentiating the above stored energy with respect to time yields ⅔𝐻0𝑚0𝜔0 cos(𝜔0𝑡), 

which is the same as that obtained in the Einstein-Laub formalism; see Eq.(103). 
The two formulations thus yield the same torque and the same energy exchange rate with the 

external world. The energy exchange rate, however, is only two thirds the product of 𝑻𝐸𝐿(𝑡) of 
Eq.(100) [or 𝑻𝐿(𝑡) of Eq.(104)] and the rotation rate 𝜔0 of the dipole. The inequality of dℰ(𝑡)/d𝑡 
and 𝑻(𝑡) ∙ 𝝎 implies that the rest-mass of the dipole and, consequently, its moment of inertia, 
must vary with time. As explained in the preceding section, we cannot offer a general formula 
similar to Eq.(34) to relate the energy imbalance (dℰ/d𝑡 − 𝑻 ∙ 𝝎) to the time rate of change of 
the rest-mass (or moment of inertia) of the point-dipole. Nevertheless, it is important to 
recognize the necessity of accounting for the variations of the rest-mass (and moment of inertia) 
in order to ensure the consistency of the laws of EM force and torque with those of EM energy. 

15. Concluding remarks. Applying the laws of classical electrodynamics to permanent electric 
and magnetic dipoles moving in external EM fields, we have concluded that the rest-mass of a 
dipole must depend on its interaction with external fields. This is in contrast to the case of 
charged particles with no dipole moments, which might gain or lose kinetic energy in their 
interactions with external fields, but maintain a fixed rest-mass at all times. 

A moving electric dipole is accompanied by a relativistically-induced magnetic dipole, and 
vice-versa—unless the direction of motion happens to be parallel or anti-parallel to the dipole 
moment, in which case the relativistically-induced companion disappears. Regardless of whether 
the dipole moment is inherent to the particle or is relativistically induced, the presence of a 
dipole moment gives rise to electric and/or magnetic fields inside the dipole, which interfere with 
external fields, thus producing variations in the internal energy of the particle. Equivalence of 
mass and energy then translates this change of the internal energy into a change of the particle’s 
rest-mass. 

In practice, variations of the rest-mass of a typical particle moving in an external EM field 
will be relatively small. For example, the change in the rest-mass of an electron, whose magnetic 
dipole moment is one Bohr magneton (0.927 × 10−23 𝐽/𝑇), when placed in a 10 Tesla external 
magnetic field, will be of the order of 1 mev; this is nine orders of magnitude below the 
electron’s rest-mass of 0.511 Mev in the absence of external fields. Nevertheless, accounting for 
this small change in the rest-mass is absolutely essential if the Poynting theorem and the force 
law (whether that of Lorentz or the one due to Einstein and Laub), are to remain compatible with 
each other. 

Finally, let us address a question that might be raised with regard to the prominent treatment 
of the Einstein-Laub theory in the present paper. Lack of enthusiasm for alternative theories of 
force and torque in classical electrodynamics is clearly understandable considering the simplicity 
and universality of the Lorentz force law combined with its tremendous success in explaining the 
observed EM phenomena. In fact, the Lorentz formulation (in conjunction with Maxwell’s 
equations) is how macroscopic electrodynamics is almost universally understood today. 

There exist, however, at least two good reasons why the Einstein-Laub theory deserves a re-
examination. First, from a purely aesthetic point of view, the Lorentz formulation in the presence 
of magnetic matter requires the notions of “hidden energy” and “hidden momentum” in order to 
comply with the conservation laws and with special relativity. In contrast, the Einstein-Laub 
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method eschews hidden entities under similar circumstances. The initial simplicity of the Lorentz 
formalism—a major source of its appeal—is thus marred by subsequent complications arising 
from the need to keep track of hidden energy and hidden momentum. 

The second incentive for re-examining the Einstein-Laub theory is that its predictions of 
force-density and torque-density distributions inside matter are at variance with those of the 
Lorentz formalism. We have described these differences in some detail in a recent paper [23]. 
Briefly, while the total force (and also total torque) exerted by EM fields on isolated objects are 
always the same in the two formulations, their predicted force and torque distributions inside 
material media exhibit substantial differences. Consequently, the possibility exists that these 
alternative theories could be distinguished from each other in radiation pressure experiments 
involving deformable media. As pointed out in [23], the existing experimental evidence (e.g., 
Ashkin and Dziedzic’s focused light experiments on the surface of water [66], and also 
electrostriction effects in nonlinear optics [67]) is supportive of the Einstein-Laub theory. 

We emphasize that the Einstein-Laub formulation provides a complete and consistent theory 
of electrodynamics. It incorporates Maxwell’s macroscopic equations (without the need to 
introduce local averaging of electric and magnetic dipoles), is consistent with the conservation 
laws of energy, linear momentum, and angular momentum, and also complies with special 
relativity. Its fundamental fields are not E and H, but rather the (E, B) pair and the (D, H) pair. 
The Einstein-Laub formalism is not limited to “the archaic treatment of magnetism” or 
“magnetostatics,” as some have suggested; rather, it applies to every problem in classical electro-
dynamics. Serious students of physics will have no reason to worry about the possibility of 
confusion if the Einstein-Laub formulation turns out to be the correct (i.e., experimentally 
verified) theory of electrodynamics. The above statements are not merely personal opinions; we 
have provided rigorous proofs of them throughout the present paper and in previous publications. 

Appendix A 
To derive Eq.(34), we start from the relativistic formulas for the energy-density ℰ(𝒓, 𝑡) and 
momentum-density 𝓹(𝒓, 𝑡) of a point-particle of rest-mass 𝔪o(𝑡) and velocity 𝑽𝑝(𝑡) given in 
Eqs.(26-28). Considering that 𝛾′(𝑡) = 𝛾3𝑽𝑝 ∙ 𝑽𝑝′ /𝑐2, we find 

 dℰ(𝑡)
d𝑡

= ∭ 𝜕ℰ(𝒓,𝑡)
𝜕𝑡

d𝑥d𝑦d𝑧∞
−∞ = 𝔪o

′ (𝑡)𝛾(𝑡)𝑐2 + 𝔪o(𝑡)𝛾′(𝑡)𝑐2 

 = 𝛾 �d�𝔪o𝑐
2�

d𝑡
+ 𝔪o𝛾2𝑽𝑝 ∙ 𝑽𝑝′ �. (A1) 

Similarly, 

 𝑭ext(𝑡) = ∭ 𝜕𝓹(𝒓,𝑡)
𝜕𝑡

d𝑥d𝑦d𝑧∞
−∞  

 = 𝔪o
′ (𝑡)𝛾(𝑡)𝑽𝑝(𝑡) + 𝔪o(𝑡)𝛾′(𝑡)𝑽𝑝(𝑡) + 𝔪o(𝑡)𝛾(𝑡)𝑽𝑝′ (𝑡) 

 = 𝛾 �d�𝔪o𝑐
2�

d𝑡
�𝑽𝑝/𝑐2� + 𝔪o𝛾2�𝑽𝑝 ∙ 𝑽𝑝′ ��𝑽𝑝/𝑐2� + 𝔪o𝑽𝑝′ �. (A2) 

Multiplying the above equation into 𝑽𝑝(𝑡) yields 

 𝑭ext(𝑡) ∙ 𝑽𝑝(𝑡) = 𝛾 �d�𝔪o𝑐
2�

d𝑡
�𝑽𝑝 ∙ 𝑽𝑝/𝑐2� + 𝔪o�𝑽𝑝 ∙ 𝑽𝑝′ ��𝛾2�𝑽𝑝 ∙ 𝑽𝑝/𝑐2� + 1�� 

 = 𝛾 �d�𝔪o𝑐
2�

d𝑡
�𝑽𝑝 ∙ 𝑽𝑝/𝑐2� + 𝔪o𝛾2𝑽𝑝 ∙ 𝑽𝑝′ �. (A3) 
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We now subtract Eq.(A3) from Eq.(A1) to arrive at 

 𝛾 �dℰ(𝑡)
d𝑡

− 𝑭ext(𝑡) ∙ 𝑽𝑝(𝑡)� =  𝛾2�1 − 𝑽𝑝 ∙ 𝑽𝑝/𝑐2� d�𝔪o𝑐
2�

d𝑡
= d�𝔪o𝑐2�

d𝑡
, (A4) 

which is the same as Eq.(34). 

Appendix B 
Consider a small particle having polarization 𝑷(𝒓, 𝑡) and magnetization 𝑴(𝒓, 𝑡), traveling in free 
space. The fields inside the particle are 𝑬in(𝒓, 𝑡) and 𝑯in(𝒓, 𝑡), while the fields outside are 
𝑬out(𝒓, 𝑡) and 𝑯out(𝒓, 𝑡). Defining the Poynting vector as 𝑺(𝒓, 𝑡) = 𝑬(𝒓, 𝑡) × 𝑯(𝒓, 𝑡), one may 
write the Poynting theorem as follows [see Eq.(9)]: 

 𝜵 ∙ 𝑺(𝒓, 𝑡) + 𝜕
𝜕𝑡

(½𝜀0𝑬 ∙ 𝑬 + ½𝜇0𝑯 ∙ 𝑯) + �𝑬 ∙ 𝜕𝑷
𝜕𝑡

+ 𝑯 ∙ 𝜕𝑴
𝜕𝑡
� = 0. (B1) 

Imagine a closed surface immediately outside and surrounding the particle at time t. Gauss’s 
theorem applied to Eq.(B1) yields 

 ∯𝑺(𝒓, 𝑡) ∙ 𝑑𝝈 + d
d𝑡∭(½𝜀0𝑬in ∙ 𝑬in + ½𝜇0𝑯in ∙ 𝑯in)𝑑𝑣 + ∭�𝑬in ∙

𝜕𝑷
𝜕𝑡

+ 𝑯in ∙
𝜕𝑴
𝜕𝑡
� 𝑑𝑣 = 0. (B2) 

The first term on the left-hand side of Eq.(B2) is the surface integral over the closed surface 
surrounding the particle. The remaining integrals are taken over the volume of the particle. A 
similar equation can be written for the region outside the particle. Taking into account the 
vanishing of the integral of 𝑺(𝒓, 𝑡) over a closed surface at infinity, we write 

 −∯𝑺(𝒓, 𝑡) ∙ 𝑑𝝈 + d
d𝑡
∭�½𝜀0𝑬out ∙ 𝑬out + ½𝜇0𝑯out ∙ 𝑯out� 𝑑𝑣 = 0. (B3) 

Adding Eq.(B3) to Eq.(B2) now yields 

 ∭�𝑬in ∙
𝜕𝑷
𝜕𝑡

+ 𝑯in ∙
𝜕𝑴
𝜕𝑡
� 𝑑𝑣 = − d

d𝑡∭(½𝜀0𝑬 ∙ 𝑬 + ½𝜇0𝑯 ∙ 𝑯)𝑑𝑣. (B4) 

In the example of a point electric dipole moving away from a charged wire in Sec.9, we 
have 𝑴 = 0 and 𝑯in = 0. Therefore, Eq.(39) evaluates the left-hand-side of Eq.(B4), which, as 
the right-hand-side of Eq.(B4) indicates, is equal in magnitude and opposite in sign to the time-
rate-of-change of the total energy of the EM field. It is thus seen that the calculation of total field 
energy stored inside as well as outside the dipole is not necessary; the use of the Poynting 
theorem has eliminated the need to evaluate the integral on the right-hand-side of Eq.(B4). In 
other words, Eq.(39) of Sec.9, which evaluates the left-hand side of Eq.(B4), yields the time-
rate-of-change of the total EM field energy. Since the force exerted by the external E field on the 
point-dipole is given by Eq.(41), it is tempting to conclude that Eqs.(39) and (41) satisfy the 
energy conservation relation 𝑭ext ∙ 𝑽𝑝 = −dℰtotal/d𝑡.  

The story, however, does not end here. It is important to recognize the dipole in Sec.9 as a 
small solid sphere with an internal E field—as opposed to a pair of positive and negative charges 
attached to the opposite ends of a tiny stick. Therefore, one must add to Eq.(39) the time-rate-of-
change of the energy stored inside the dipole, namely, ℰ(𝑡) of Eq.(38). Subsequently, this latter 
contribution to the rate-of-change of energy, which is not cancelled out by 𝑭ext ∙ 𝑽𝑝, produces 
the time-rate-of-change of the rest-mass 𝔪o given by Eq.(42). Clearly, one must be careful to 
account for all contributions to the energy of the particle, not just the obvious ones. 

particle all space 
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In the system depicted in Fig.2, as the dipole recedes from the charged wire, its internal 
energy ℰ(𝑡) given by Eq.(38) varies with time (due to the declining magnitude of the external 
field). Recalling the equivalence of mass and energy, a change in the internal energy of the 
spherical point-particle must result in a change of its rest-mass. Indeed, Eq.(42) is nothing but 
the time-derivative of the internal energy given by Eq.(38) — with the factor 𝛾 disappearing from 
Eq.(42) due to the time-dilation in going from the rest frame to the laboratory frame. 
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