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The storage capacity of a medium, be it a one-dimensional wire, a two-dimensional platter, or a three-dimensional cube, ulti-
mately depends on the intrinsic signal-to-noise ratio of the storage medium. The recording mechanism may be assumed to be
error-free in the sense that any region of the medium, no matter how small, can be repeatedly and reliably set to one of two
physically distinct states, 0 and 1. Also, the readout mechanism can be assumed to have unlimited resolution, in the sense that
an arbitrarily small probe-tip can explore the storage medium and translate its local physical state into a real-valued binary
signal of magnitudeS0 or S1 in units of, say, volts. As far as the intrinsic storage capacity of the medium is concerned, the
data-transfer rate and any time-dependent noise contributions to the readout signal can be made irrelevant. This is achieved
by slowing down the readout process to allow integration over long intervals of time, thereby reducing the time-dependent
component of noise to a negligibly small value. The only noise source that needs serious consideration, therefore, is the media
noise, which manifests itself in the fluctuations of the readout signal observed when the probe-tip scans the medium, moving
from one location to another to reveal the local state of the medium in its output signal,S0 or S1. The fundamental assumptions
of this paper are: (i) the media noise is white, that is, its spatial distribution is uncorrelated; (ii) the power spectral density of
the media noise isNo volt2·cmd , whered is the dimensionality of the storage medium (d = 1 for a wire,d = 2 for a platter,
d = 3 for a cube). The storage capacityC of the medium per unit length, area, or volume (as the case may be) is found to be
proportional to the medium’s intrinsic signal-to-noise ratio in accordance with the formulaC = 0.059 (S1 − S0)

2/No in units
of bits per cmd . [DOI: 10.1143/JJAP.41.1638]
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1. Introduction

Data storage is one of the four pillars of today’s electronic
information technology; the other three being generation, pro-
cessing, and transmission of electronic signals that embody
such information. The media of data storage are semicon-
ductor memories [e.g., static and dynamic random access
memories (SRAM, DRAM), read-only memory (ROM), pro-
grammable read-only memory (PROM), etc.], magnetic disks
and tapes, optical disks [e.g., compact disk (CD) and digi-
tal versatile disk (DVD), as well as their ROM, Recordable,
Rewritable, and RAM versions, magneto-optical disk, etc.],
and, in a few experimental systems, holographic and other
volume storage media. The main criteria for evaluating the
performance of a data storage medium are its attainable stor-
age density (number of bits per unit area or volume) and its
data transfer rate (number of bits per unit time), although
practical issues of reliability, longevity, size, and cost are also
extremely important. The focus of the present article is on
disk- and tape-like media of data storage, although the results
may be applicable to certain volume storage media as well.

The paper is organized as follows. Section 2 describes a
one-dimensional model for the media and the corresponding
readout probe used in our initial analysis. In section 3 the pro-
cess of readout and its associated signal-to-noise ratio (SNR)
are explained, and in section 4 the spectral properties of the
so-called “media noise” are derived. Section 5 explains the
relation of storage density to attainable data rate in the ab-
sence of all sources of noise except the media noise. Section
6 provides an explanation as to why Shannon’s classical for-
mula for the capacity of a noisy channel does not apply to the
present problem. For the idealized medium postulated in this
paper, the fundamental relation between storage capacity and
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intrinsic SNR is derived in §7, and the consequences for the
existing storage systems are explored. In section 8 we argue
that the same formula applies to storage media with dimen-
sionality greater than one, provided that theSNR is properly
defined in each case.

2. Definitions and Notation

Consider a one-dimensional line or wire along which we
wish to store binary data, as shown in Fig. 1. At each point
along the wire the recorded information assumes one of two
states, Zero and One, which the medium of the wire can pre-
sumably support. The length of the wireL may be divided
into K arbitrarily small segments of equal length�, where

Fig. 1. A one-dimensional storage medium of lengthL can store binary
information along its length in the form of arbitrarily small marks. A probe
with a very fine tip (width= ε) reads these marks and produces a signalSn

at locationxn = nε along the wire.Sn consists of a fixed signal, eitherS0
or S1, and an additive noise component of amplitudeαn/ε1/2. The storage
capacity of the medium is defined as the maximum number of user bits
that can be stored per unit length of this wire, and can be subsequently
retrieved with an arbitrarily small probability of error.
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K� = L. Each such segment can be placed into the Zero
or One state, producing what is commonly referred to as a
recorded mark. Since in this article we are not concerned with
the nature of the storage medium, nor with the mechanism of
recording, the recording process itself will be assumed to be
free of errors.

Retrieval of the stored information is done sequentially by
an idealized probe whose tip dimensionε is much smaller
than any desired length of a segment�. Upon reading the
Zero and One marks, the probe produces real-valued signals
S0 andS1, respectively. Although the units ofS0,1 can be any-
thing, throughout this article we shall assume them to be volts.
In general, the readout signal is contaminated by noise. At
any given location along the wire, say, atxn = nε, the read-
out signal may be written asSn = S0,1 + αn/ε

1/2. HereSn is
the signal retrieved from the segment of the wire that contains
xn, andαn is a time-independent random variable which has
units of volt·cm1/2. As long as the probe-tip stays at the given
locationxn , the values ofSn andαn will remain the same, that
is, they will not vary with time.

αn is a random variable whose value changes as the probe
moves along the wire to a different location. By assumption,
all αn ’s have the same probabilistic distribution and are in-
dependent of each other. Thus〈αnαm〉 = 0 whenn 	= m,
and 〈αnαm〉 = No when n = m. The units ofNo, the so-
called noise spectral density, are volt2·cm. As an example,
supposeS0 = −5 volt, S1 = +5 volt, No = 10−7 volt2·cm
andε = 1Å = 10−8 cm. Then the variance of eachSn will
be No/ε = 10 volt2, and the noise amplitude (or standard de-
viation) at a given location of the probe will be (No/ε)

1/2 =
3.16 volt. Such large fluctuations of the probe signal, which
are inherent to the probe-medium interface, will be substan-
tially reduced when the signal is integrated over a reasonably
long section of the wire.

3. Readout of Information

The optimum detection scheme for each mark of length
� consists of integrating the readout signal over the entire
length of the mark. The average signal will thus be(�/ε)S0

or (�/ε)S1, as the case may be. Note that we are scanning
the medium by moving the probe oneε at a time, moni-
toring the read signal at each step, then adding the signals.
The noises will also add up, but because they are random
and independent of each other, only their variances will be
additive. The total variance of the integrated noise over�

is thus given by(�/ε)(No/ε), which yields an integrated
noise amplitude of(�/ε)(No/�)1/2. The ratio of the sig-
nal amplitude to the noise standard deviation has thus im-
proved, becomingS0,1/(No/�)1/2 for individual marks. Sup-
pose� = 10 nm = 10−6 cm andNo = 10−7 volt2·cm, as
before. Then the noise amplitude relative to a signal level of
S0,1 = ±5 volt has reduced to 0.316 volt, a ten-fold improve-
ment over the preceding example.

Because the assumed media noise is time-independent, in-
tegration over time does not reduce the noise level, irrespec-
tive of the time that the probe spends at a given location. In-
tegration over the length of the medium, however, is quite ef-
fective in improving the signal-to-noise ratio (in proportion to
�1/2) as shown above. One way to achieve integration along
the length of the wire is to use a larger probe tip, say, one

that has size�, provided, of course, that the physical mecha-
nism of probe-medium interaction remains unchanged. Thus,
for instance, a focused laser beam of diameter� can read
individual marks of length� at once, with a random (but
time-independent) noise component that represents the fluc-
tuations of the read signal, yielding a signal-to-noise ratio of
S0,1/(No/�)1/2. These fluctuations of the read signal, com-
monly referred to as “media noise”, must be distinguished
from other components of noise (e.g., laser noise, shot noise
of photodetection, thermal noise of the electronic circuitry),
which are subsequently added to the media noise, but are in-
dependent of the inherent media fluctuations.

4. Media Noise Spectrum

A random noise waveform as a function ofx , as might ap-
pear along the length of a given wire, is depicted in Fig. 2(a).
For this waveform the autocorrelation function and its Fourier
transform, the power spectral density, are shown in Figs. 2(b)
and 2(c), respectively.1,2) It is observed that in the limit when
ε → 0 the noise becomes white, having a uniform spectrum
extending from−∞ to +∞.

Note that the noise variance observed with a probe-tip of
sizeε at any given location x of the wire is simply the area
No/ε under the spectral density function. When the noise is
filtered, for instance, by an integrator over the length interval

Fig. 2. (a) The media noise is a time-independent random variable hav-
ing amplitudeαn/ε1/2 at locationxn = nε. The identical random vari-
ablesαn have average 0 and varianceNo, and the noise amplitudes at
any two locations are uncorrelated. (b) The autocorrelation function of
the noise waveform depicted in (a) is a triangular function of width 2ε

and heightNo/ε. (c) The power spectral density of the media noise, ob-
tained by Fourier transforming its autocorrelation function, is given by
S(σ ) = No[sin(πεσ)/(πεσ)]2, whereσ represents spatial frequency. This
noise spectrum, which has a magnitude ofNo and a width of 2/ε, ap-
proaches the spectrum of white noise in the limit whenε → 0.
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�, its spectral density is cut off at the finite spatial frequencies
σ = ±1/�. In that case, the variance (or power) of the filtered
noise will be No/�, which is the area under the truncated
spectral density function.

What happens to the noise if the probe moves along the
wire at a constant velocityV , allowing the media noise to be
monitored as a function of timet? The only change in Fig.
2(a) would involve a rescaling of the horizontal axis from
x to t = x/V . The autocorrelation function shown in Fig.
2(b) maintains its height, but its width becomes 2ε/V . The
spectral density function, however, changes in two important
ways. First, its height changes fromNo to No/V , which has
units of volt2·sec (or volt2/Hz). Second, its width becomes
±V/ε in units of temporal frequency Hz. The area under the
spectral density function, however, remains the same, indi-
cating that the total media noise power (or its variance at
any given instant of time) is still the same as before, i.e.
No/ε. This important property of media noise cannot be over-
emphasized: When the speedV of the probe relative to the
wire increases, the noise spectrum becomes broader in pro-
portion toV . At the same time, its height drops in proportion
to V , ensuring the constancy of the integrated noise power
or, what is the same thing, the independence from the probe
velocity of the noise variance at any given instant of time.

As an example, consider the case whereS0 = −0.5 volt,
S1 = +0.5 volt, No = 10−7 volt2·cm, andV = 600 cm/s. Let
us further assume that the noise spectrum is measured by a
spectrum analyzer in a bandwidth of� f = 30 kHz. The so-
called carrier-to-noise ratioCNR is then computed as follows:

CNR = 10 log10{(S1 − S0)
2/[(No/V )� f ]} = 53 dB. (1)

TheCNR value of 53 dB is typical of optical data storage me-
dia in general, and recordable DVD (digital versatile disk) in
particular.3) The above numerical values for signal and noise
levels will be used in the examples that follow.

5. Data Transfer Rate

So long as the media noise is the dominant component of
noise in a given system, speeding up or slowing down the
probe cannot change the signal level, nor can it change the
noise amplitude (as monitored at fixed instants of time). The
signal-to-noise ratio thus remains the same, even though by
going to higher values ofV the so-called “bandwidth” of the
channel has increased. Note that when a system is media-
noise limited, the data rate can be arbitrarily increased by
speeding up the motion of the probe relative to the storage
medium. The capacity of the medium is, of course, indepen-
dent of the data-rate, because as the data-rate increases in pro-
portion toV (while the error-rate remains the same, thanks to
the constancy of theSNR), the density of recorded data on the
medium does not change; only a longer length of the medium
travels under the probe, displaying a proportionally greater
number of bits during a fixed time interval. The data rate can
thus be made independent of the recording density, so long
as the other noise sources (e.g., electronic noise of the am-
plifiers) remain negligibly small compared to the media noise
integrated over the channel bandwidth.

6. Shannon’s Capacity

The capacity of an analog channel4–8) is given by the well-
known formulaC = W log2(1 + SNR). This formula, how-
ever, does not apply to our postulated model of a data storage
system, because the channel does not have a fixed average sig-
nal power, as required in the derivation of the formula; rather,
our channel’s limitation is its peak signal amplitude.9)

If the above formula were applicable, one could have in-
creased the capacityC by keeping the probe velocityV con-
stant while reducing the probe-tip diameter, say, from� to
0.5�. This would have kept the signal level the same, but in-
creased the noise level not by changing the height of the spec-
tral density function (which is fixed atNo/V ), but by increas-
ing the channel bandwidth fromV/� to 2V/�. Under these
circumstances theSNR would have declined (more noise ac-
companying the same signal), while the bandwidthW of the
channel would have increased. Because the dependence ofC
on W is linear while that onSNR is logarithmic, the storage
capacity of the medium would have increased as a result of
shrinking the probe-tip. This is obviously absurd, since ca-
pacity, an inherent property of the medium, cannot depend on
probe size.

7. Capacity of the Storage Medium

Assuming that a very fine probe-tip with unlimited resolv-
ing power is available, we wish to determine the storage ca-
pacity of the aforementioned wire. By reducing the mark size
� one can store more information bits on a given length of the
wire, but the noise creeps up as� becomes smaller, making
the recovered bits subject to a larger probability of error. The
natural question, therefore, is: What is the maximum number
of bits that can be reliably retrieved from such a medium?

To answer the above question we choose a fixed lengthL
of the wire and divide it intoK equal segments of length
� = L/K . Under these conditions the total number of binary
sequences that can be stored on the given length of the wire
is 2K , while the total power of the media noise (i.e., sum of
variances over all segments) isK (No/�) = (No/L)K 2. Now,
in the absence of noise, if two retrieved sequences happen to
differ in m positions, the square of their Euclidean distanceδ

will be given by

δ2 = m(S1 − S0)
2. (2)

Therefore, in the limit of largeK , the maximum numberM
of erroneous bits that needs to be considered for anyK -bit
sequence will be

M = �(No/L)K 2/(S1 − S0)
2� = �[L(S1 − S0)

2/No]−1K 2�,
(3)

where �x� is the largest integer that is less than or equal
to x . In other words, in the limit of largeK , the Euclidean
distance between the noisy and noiseless readout waveforms
corresponding to anyK -bit sequence is less than the dis-
tance between two noiseless waveforms that differ in more
than M locations. Thus, with reference to Fig. 3, if in the
K -dimensional Euclidean space of all readout waveforms one
picks a point that represents the ideal (noiseless) waveform of
an arbitraryK -bit sequence, the actual (noisy) readout wave-
form of that sequence will be somewhere within a spherical
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Fig. 3. In the K -dimensional space of all possible readout waveforms,
the ideal or noiseless signalsS1S2S3 . . . SK are at the vertices of a hy-
percube, where eachSn is either S0 or S1. The actual or noisy readout
waveforms corresponding to each vertex fall on a spherical shell of ra-
dius (No/L)1/2K , centered on the vertex (only one such shell is shown).
For fixed values ofS0, S1, No andL , asK is increased the noise spheres
engulf more and more vertices of the hypercube. If only those sequences
that have non-overlapping noise spheres are selected for recording on the
medium, they will be uniquely identifiable from the read waveform, be-
cause they will be the ones with the shortest Euclidean distance from the
actual readout signal.

shell of radius(No/L)1/2K . This spherical shell contains all
K -bit sequences that differ from the original sequence inM
bits or less, but no sequences that differ from the original in
more thanM locations.

The number ofK -bit sequences differing in exactlym lo-
cations from each other is given byK !/[m!(K −m)!], and the
total number of sequences contained within the above spher-
ical shell may be obtained by summing overm from 0 to M.
We thus divide the total number ofK -bit sequences into non-
overlapping groups that fall within the noise’s sphere of influ-
ence; the total number of these groups will be

� = 2K /

M∑

m=0

{K !/[m!(K − m)!]} (4)

In each group only one sequence, the one at the center of the
sphere, can be used for reliable data storage. This is because
the noise added to such a readout waveform can take it away
from the center and into the surrounding spherical shell, yet
because the spheres do not overlap, the ideal waveform re-
mains closest to the actual (noisy) readout waveform. Thus
the total number of sequences that can be reliably retrieved
is � (that is, one per sphere), and the storage density of the
medium is given by

D = (log2 �)/L = {K − log2

M∑

m=0

{K !/[m!(K − m)!]}}/L .

(5)

Figure 4 shows a plot ofD versusK for the specific values
of S1 − S0 = 1 volt, No = 10−7 volt2·cm, andL = 1µm.
The curve exhibits a maximum storage density ofDmax =
6.4 × 105 bits/cm atK = 158. Despite the specific values
chosen for the various parameters, this result is quite general
for the following reason. The value ofM in eq. (3) depends
only on the product ofL and the signal-to-noise ratioSNR =
(S1 − S0)

2/No. Thus for other values ofSNR we can adjust
the lengthL of the wire in inverse proportion toSNR to keep
their product (and consequently the value ofM) constant. The

Fig. 4. Plot of the densityD versus the number of segmentsK dividing
the lengthL of the wire, as given by eq. (5) with the summation’s upper
limit M given by eq. (3), for fixed values ofS0, S1, No, andL . The curve’s
jaggedness is caused by the operator�·�, which causesM to change dis-
continuously with the increasing ofK . The density peaks when the noise
sphere begins to grow faster than the number of vertices of the hypercube
(see Fig. 3).

plot of D versusK should remain the same as that in Fig. 4,
except for a scaling of the vertical axis bySNR because�,
being a function only ofK andM, has not changed, whereas
L has been scaled bySNR. The net result is that, so long as
the length of the wire is chosen asL = 1000/SNR (in units of
cm), the peak ofD versusK will occur at K = 158, yielding
a maximum densityDmax = 0.064(S1 − S0)

2/No bits/cm.
The limiting of the lengthL of the wire in the above dis-

cussion causes a slight over-estimation of the capacity. This
is because the number of allowed segmentsK may not be
large enough to eliminate the statistical fluctuations of the
integrated noise power. To overcome this limitation, we in-
crease the lengthL to see howDmax will change. This is done
in Fig. 5, which shows a computed plot ofDmax versusL. As
expected,Dmax decreases slowly with the increasing ofL, ap-
proaching the asymptotic value of 5.9×105 bits/cm. Allowing
for the scaling by theSNR as discussed earlier, we obtain the
following simple formula for the storage capacityC of the
medium:

C = Limit
L→∞

Dmax = 0.059(S1 − S0)
2/No. (6)

Example 1. For the currently available DVD recordable
media3 which attain aSNR of 107 cm−1, the storage capac-
ity should be around 0.059× 107 bits/cm or 59 bits/µm. This
means that, if one could push the readout resolution, and if the
media noise remained the dominant source of noise, one could
at best store 59 user-bits per micron along a given length of
track (track pitch= 0.74µm). The user-bits thus stored can
be retrieved essentially free of error, i.e., with an arbitrarily
small error rate in the limit of long recorded blocks. A single-
sided, single layer DVD that currently stores 4.7 GB of user
data on 0.74µm-wide tracks, can thus reach a maximum of
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Fig. 5. Plot of the maximum densityDmax versus the lengthL of the
wire for fixed values ofS0, S1, and No. Although computation ofDmax
for larger values ofL is not feasible, it is reasonable to assume that
Dmax → 5.9 × 105 in the limit whenL → ∞.

100 GB if its full capacity could be realized. The only way to
beat this limit and go beyond 100 GB per platter is to develop
storage media that have a larger intrinsicSNR.

Example 2. As another example we consider the mag-
netic media used in modern hard disk drives. The relative
head-to-media velocity in these drives is aroundV = 20 m/s,
and they exhibit a 23 dB signal-to-noise ratio in a� f =
400 MHz bandwidth (two-sided). Assuming that the perfor-
mance of these systems is limited by the media noise, we
find from eq. (1) that the intrinsicSNR of the media must be
around 4× 107 cm−1. With a 1µm track-pitch, this leads to
an estimate of∼ 152 Gbits/in2 for the ultimate areal density
achievable with the current media. Considering that the high-
est demonstrated density in the laboratory presently stands at
50 Gbits/in2, this capacity does not seem very large. However,
it could well be that the current systems are not media noise
limited, in which case the actualSNR will be somewhat higher
than our estimate, and, therefore, the capacity will be propor-
tionally larger. Alternatively, the laboratory media may have
less intrinsic noise or more intrinsic signal than the commer-
cially available media, which makes the upper limit of storage
density higher than our estimated value.

8. Extension to Higher Dimensions

Although the basic formula (6) was derived for a one-
dimensional wire, it is quite straightforward to extend the

result to higher-dimensional media as well. For a two-
dimensional surface (e.g., a disk) the probe must have a square
tip of areaε2, and for a volume storage medium the probe will
have to be able to explore small cubical volumes of sizeε3.
The probe scans the medium sequentially, visiting different
regions in an arbitrary order, until the entire area (or volume)
of the medium has been explored. Recognizing that a track on
a disk has a certain width, we realize that our 1-D probe of the
preceding section has in fact been reading a 2-D surface, but
integrating over the width of the track throughout the entire
process. Thus, while the capacity is still given by eq. (6), the
units ofSNR become 1/cmd , and capacity must be expressed
in bits per cmd , whered is the dimensionality of the storage
medium (d = 1 for a wire,d = 2 for a platter,d = 3 for a
cube).

For a 1 cm-long, 1µ-wide track (area= 10−4 cm2), a lin-
ear noise spectral density ofNo = 10−7 volt2·cm is equivalent
to an areal spectral density of 10−11 volt2·cm2. A 1µm × 1Å
rectangular region of this medium (area= 10−12 cm2) ex-
hibits a noise amplitude of(No/area)1/2 = 3.16 volts, as ob-
tained for the same medium in section 2. Similarly, an intrin-
sic SNR of 4 × 1011 cm−2 would lead to a capacity of 0.059
SNR = 23.6 Gbit/cm2 or 152 Gbit/in2, consistent with our
previous estimate for magnetic hard disks.
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