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Computation of electron diffraction patterns in Lorentz electron 
microscopy of thin magnetic films 

M. Mansuripur 
Optical Sciences Center, University of Arizona, Tucson, Arizona 85721 

(Received 14 June 1990; accepted for publication 20 November 1990) 

The vector potential field for a thin magnetic film with arbitrary pattern of magnetization is 
calculated using fast Fourier transforms. The vector potential is used to compute the 
phase modulation imparted to the electron beam in Lorentz electron microscopy. Calculated 
phase patterns and the corresponding intensity distributions for several magnetic 
configurations of practical interest are described. 

I. INTRODUCTION 

Lorentz electron microscopy is a powerful tool for 
high-resolution studies of magnetic structure in thin 
films.‘” The physical mechanism that underlies all known 
modes of Lorentz microscopy is the interaction between 
the propagating electron wave and the magnetic vector 
potential field. For a given electron trajectory, the interac- 
tion, commonly known as the Aharonov-Bohm effect, re- 
sults in a phase delay directly proportional to the path 
integral of the vector potential.7 Lorentz microscopy is 
therefore a branch of phase-contrast microscopy whose 
various modes (e.g., Fresnel, Foucault, Differential Phase 
Contrast, Small Angle Diffraction, Electron Interference, 
and Holography) simply represent different designs for 
capturing the information contained in the phase of the 
beam after passage through a magnetic specimen. The pur- 
pose of the present paper is to introduce a general tech- 
nique for computing the phase imparted to the electron 
beam by an arbitrary two-dimensional pattern of magneti- 
zation. In Sec. II we establish the mathematical relation 
between the magnetization distribution and the vector po- 
tential field. Numerical results obtained with the proposed 
scheme are then presented in Sec. III. 

II. MATHEMATICAL ANALYSIS 

In a previous paper8 we showed that the magnetic field 
distribution H(x,y,z) of a thin magnetic film can be accu- 
rately and efficiently computed with the aid of fast Fourier 
transforms. That work is now extended to the computation 
of the vector potential field A(x,y,z). Consider a magnetic 
film parallel to the xy plane of a Cartesian coordinate sys- 
tem, as shown in Fig. 1, and denote its magnetization dis- 
tribution by m(x,y). Assume that the film has thickness T 
and that its surfaces are at z = *r/2. Also assume that 
m(x,y) is periodic along both x and y, with periods being 
L, and L, respectively. Thus the Fourier series represen- 
tation of the film’s magnetization will be 

Q) 

m(w)= C Ii 
m=--m n= - 00 

M,,,,,exp[i’h(~+~)], 

(la) 

where 

m(x,y)exp 

)I dx dy. (lb) 

In general, an arbitrary magnetization distribution 
m(r) gives rise to the vector potential field A(r) described 
by the convolution integral 

ISS 
00 r - r’ 

A(r) = m(r’)x,r-r,,ld3r’. (2) -02 
In the case of a thin film whose magnetization could be 
assumed uniform through the thickness, m(r) may be writ- 
ten as m(x,y)u(z), where 

u(z) = 
I 
1; IZI <; 

(3) 
0; Otherwise. 

Now, the Fourier transform operators in 2 and 3 dimen- 
sions are 

X exp [ - i2rr( xs, -I- ysy ) ] dx dy (4a) 

and 

sss 
oc = g(x,y,z) X exp 
-02 

[ - i2n(x.s, + y.sy 

+ zs,) ] dx dy dz. (4b) 

Accordingly, one may write the Fourier transform of Eq. 
(2) as follows: 

(5) 

The Fourier transforms on the right side of Eq. (5) can be 
shown to be 
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Plane, monochromatic 

beam of coherent electrons 

FIG. 1. Schematic drawing of the magnet ic film and  the electron beam in 
Lorentz electron microscopy. xy is the plane of the film and  the unit 
vector p  is the propagat ion direction of the beam. 

93{m(r)l=& [exp( - iv T  s,) 
z 

- expb ~s,)l~2Cmb,y)), 
and 

+=-;. 
I I 

Consequently, 

(6) 

(7) 

A(x,y,z) = 
ss 

m  FaCm(-w)l 
-cc 

xQ,(~,,~,)exp[~~~(x~~+~~~)ldSxdSy, 
(84 

where 

Q,(w,) = s”” m  

exp[z%(z - r/2)5] - exp[&r(z + r/2)s,] 

%(Z + 4  + & 
s ds,. 

(8b) 
The integrals in Eq. (8b) are readily evaluated using the 
identities 

s 

m  exp ( L&r@) 
--03 iG12TFlds2) 

=$$[l-exp(-2~~lCl)l; a>O, (9) 

and 

02 exp ( z23r&) 
mds=iexp( - 27ra15‘1); a>O. 

--m 7Ta 
(10) 
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Replacing for m(x,y) in Eq. (8a) from Eq. (1) and car- 
rying out the integrals, one obtains 

A(x,Y,z) = if 
VI=-CO 

2 A,.(r)exp[i2~(~+~)], 
n= - m  

where 

(114 

A,,(z) 

I 2i 
; exp( + 2rsz)sinh(rrs)a- xM,, 

r 
z< -- 

2  
2i I 1  ; o-~exp[27iS(z---/2)]o- -i 

= 

X exP[ - 2%3(z + r/2)10+ xM,, 
I 

IzI <i 

2i 
7 exp( - 2rrsz)sinh(rrs)a+ xM,, z>+-7 2 

In the above equation s is the magnitude of the 
a-dimensional frequency vector s, defined as 

s=s,? +s,v^=(m/L,)? +  (n/L,)y”, 

o is a unit vector along s, namely, 

(llc) 

u= (s,/s) 2  + (s).ls) v^, (lld) 

and o+ and cr- are complex vectors defined as: 

oh=d=i3. (lie) 

The term corresponding to M  = n = 0 in Eq. ( 1  lb) is 
obtained by setting o = 0 and allowing s to approach zero. 
One finds 

I 

+27~&xM~ z< -r/2 

ho(z) = - 47rz5? xl&J ]z] <r/2 (llf) 
-2%&X& z> +r/2 

Equation ( 11) is a general expression for the vector 
potential field of thin magnetic films, with the stipulation 
that the magnetization through the film thickness is uni- 
form. 

To find the phase modulation imparted to the electron 
beam after passage through the magnetic film, we must 
integrate A(x,y,z) along the electron trajectories. As indi- 
cated in Fig. 1, the unit vector p denotes the direction of 
propagation of the beam. The imparted phase function 
<P(x,y) is thus given by’ 

e m  
W r)=JIc -m s pXA(r + /p)d/. (12) 

In Eq. ( 12) r = (x 2 + y? ) is the intersection of an 
arbitrary electron trajectory with the xy plane at z = 0,e is 
the electronic charge, fi is Planck’s constant, and c is the 
speed of light. Replacing for A from Eq. ( 11) and evalu- 
ating the integral in Eq. (12) we obtain 
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+(x,y)=E z i i7Gp(rs)(uX~l*[pX(p 
m m n=-a s 

l?W#OO 

xM,dlexp[~%-(~+~)], (134 

where 

1 
Gp(m)= (p*a)2 + (p* P >2 

sin(nrsp*a/p* 3 ) 
arsp.a/p* 3 . (13b) 

Some of the more interesting features of this phase function 
will now be described. 

(i) The factor l/s in Eq. ( 13a) appears to discriminate 
against high spatial frequencies. This appearance however 
is deceiving. The local deflection of the electron beam is 
proportional to the gradient of the phase function. Since 
for a sinusoidal function the gradient is proportional to the 
frequency, the l/s factor maintains the balance amongst 
the various Fourier components in their contributions to 
the deflection of the electrons. 

(ii) In the expression for @(x,y) all Fourier compo- 
nents M,, of the magnetization distribution appear as 
p X (p X M,,). Since p is a constant unit vector, one 
might as well begin the analysis by Fourier transforming 
p X [p X m(x,y)] instead of m(x,v). In this way it imme- 
diately becomes clear that the projection of m(x,y) along 
the propagation direction p makes no contribution to 
@(x,-y). What is more, since in Eq. ( 13a) the vector o 
x f is dot multiplied by the Fourier coefficients of p 
x [p X m(x,y)], the latter vector’s component along the z 
axis plays no role in the outcome and may also be dis- 
carded. One thus retains only the components of pX 
[p X m(x,v)] along the x and y axes for further processing. 

(iii) The part of the magnetization distribution 
m(x,y) which survives the initial processing steps de- 
scribed above, may still fail to contribute to Q(x,y). For 
instance, if p X (pXM,,) happens to be parallel to its 
corresponding frequency vector u, the dot product in Eq. 
(13a) vanishes. Thus the various spatial frequencies con- 
tained in the magnetization pattern receive unequal repre- 
sentation in the phase function. 

(iv) When the electron beam is normally incident on 
the sample (i.e., when p = P ) the function G,(m) is 
equal to unity for all spatial frequencies s. At all other 
angles of incidence, Gp(n) attenuates certain spatial fre- 
quencies relative to others. Notice that the film thickness r 
appears in G,,(rs) only as a scaling factor for s. Thus for a 
given magnetization distribution and a given (oblique) di- 
rection of incidence, thinner films convey the information 
content of the high-frequency terms better than thick films. 

(v) The zero-frequency term Moo does not appear in 
Eq. ( 13), indicating that a uniformly magnetized film will 
cause no deflection of the electron beam. This is contrary 
to our expectations based on the Lorentz law of force, 
which predicts a net deflection angle proportional to the 
in-plane component of magnetization. Inspection of the 
zero-frequency term A, in Eq. ( 1 If), however, reveals 

that this term is an odd function of z. Thus the part of the 
path within the region z < 0 cancels the contribution to 
the phase made by the part that lies in z > 0. Of particular 
interest here is the case of normal incidence (i.e., p 
= f ) where the zero-frequency vector potential every- 
where in space is orthogonal to the path, making no con- 
tribution whatsoever to the phase function. The absence of 
the zero-frequency term from the phase function, however, 
has no practical significance, since in practice the sample 
dimensions are always finite and the zero-frequency term is 
inevitably replaced by low-frequency terms which continue 
to obey the Lorentz law of force. 

III. NUMERICAL RESULTS AND DISCUSSION 

To gain a better understanding of the numbers in- 
volved in Lorentz microscopy, let us first consider the sim- 
ple case of a magnetic film whose in-plane magnetization 
(oriented along y) has the following distribution: 

m(x,y) =M, cos(2~x/l,) 9. (14a) 

Provided that L, is sufficiently large, this magnetization 
will appear uniform in the vicinity of the origin. Q, (x,y) for 
the above distribution is readily computed from Eq. ( 13). 
Assuming that the electron beam is normally incident, one 
finds 

2erM, sin (297x/L,) 
WV) = - 7 

l/L, . 
(14b) 

If the electron beam is confined to the neighborhood of the 
origin, one may replace the sine function in Eq. (14b) with 
its argument to obtain 

4rerM, 
Q(x,y) E - -g--x. (14c) 

In the Gaussian system of units e = 4.80325 
X lo-” esu, c = 2.99793 X lO”cm/s, and fi 
= 1.05459 x 10 - 27erg sec. For a film of thickness Q- 
z 600 z& and saturation magnetization MS 
= 1000 emu/cm3 the phase of the electron beam upon 
transmission through the sample is therefore given by 

@(x,y) = - 1.146x lo6 x, (14d) 

where the units are centimeter for x and radian for Q. 
Let the kinetic energy of the electron beam be Ek 

= 100keV. Then the electron wavelength /z is computed 
from the formula 

/z=h/J2rnEk + (Ek/cj2. (15) 

to be 0.037 A. [In Eq. (15) h is Planck’s constant and m is 
the electron mass. The expression in the denominator gives 
the momentum of the electron, including the relativistic 
correction to the classical momentum-energy relation.] 
The phase function in Eq. (14d) may now be written as 
follows: 

@(x,y)=F (67.5~10-~)x. (16) 
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FIG. 2. (a) Pair of side-by- 
side Neel walls in a thin film 
with in-plane magnetization. 
The actual lattice used in the 
computations is 256 x 256 
with a lattice constant of 50 
A. The assumed film thick- 
ness is r = 600 8, and the 
saturation magnetization of 
the sample is MS 
= 1000 emu/cm’. (b) Plot 
of the phase function 
@(x,y)vs x for a fixed (arbi- 
trary) value ofy. (c) Inten- 
sity distribution of the elec- 
tron beam in the Fresnel 
mode at a defocus distance 
of 0.37 mm. The circle 
marks the boundary of the 
beam. The “bright” and 
“dark” lines are the images 
of the two side-by-side walls. 
(d) Cross sections of the in- 
tensity distribution patterns 
in the Fresnel mode, corre- 
sponding to defocus dis- 
tances of 0.925 mm (solid 
curve) and 0.37 mm 
(dashed curve). (e) Inten- 
sity in the focal plane of a 
lens withf = 1.11 mm. The 
lens is immediately behind 
the magnetic film and the 
beam diameter in the plane 
of the specimen is 1.48 pm. 
(f) Foucault image of the 
pair of Neel walls in (a), ob- 
tained by blocking the right 
half of the focal plane distri- 
bution in (e) and allowing 
the remaining electrons to 
propagate a distance of 1.11 
mm. 

Accordingly, the deflection angle for a uniform, normally 
incident beam on this sample is 67.5 microradians. 

In the following examples several cases of practical 
interest are explored. Unless otherwise specified, L, = L, 
= 1.28 pm, r = 600 A, MS = 1000 emu/cm3,--and i 
= 0.037 A. The magnetization distribution is defined on a 
256 x 256 square lattice with a lattice constant of 50 A. 
The chosen distributions satisfy the periodic boundary con- 
ditions with smooth transitions at the boundaries. The 
structure of individual domain walls is described by the 
equation 
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FIG. 3. Pair of side-by-side Bloch walls in a thin film with in-plane 
magnetization. 

e(x)=2 arctan[exp(xT)], (17) 

where x0 is the position of the center of the wall, A, is the 
wall thickness parameter, and 8 is the angle of deviation of 
the magnetization vector relative to its orientation at x 

- CO. Unless specified to the contrary, the separation 
b=etween adjacent walls is 0.64 pm and A, = 500 A. The 
diffraction calculations reported in this paper are based on 
the standard methods of scalar diffraction theory”” and 
require two Fourier transformations for the Fresnel mode 
of microscopy. 

A. Side-by-side walls in a thin film with in-plane 
magnetization 

Consider the two 180” Neel walls shown in Fig. 2(a). 
(At least two walls are needed in parallel in order to 
achieve periodicity at the boundary.) The magnetization 
vector everywhere is in the plane of the film. For normally 
incident electrons, the phase function cP(x,y) is indepen- 
dent of y. A plot of Q(x,y) versus x for a fixed value of y 
is shown in Fig. 2(b). Figure 2(c) shows the calculated 
intensity pattern in the Fresnel mode at a defocus distance 
of 0.37 mm. The circular cross section of the electron beam 
with a diameter of 1.48 pm is also visible in this picture. As 
expected the wall on the right hand side gives rise to an 
intensity peak whereas the wall on the left hand side cre- 
ates an intensity valley. Figure 2(d) shows cross sections 
of the intensity profiles at two different defocus distances. 
The solid curve corresponds to 0.925 m m  of defocus 
whereas the dashed curve represents the intensity pattern 
at a defocus distance of 0.37 mm. The general features of 
these patterns are similar, but obvious differences in their 
detailed structure and relative contrasts may be noticed. 

To investigate the image properties in the Foucault 
mode of Lorentz microscopy, we calculated the intensity 
pattern when a lens with focal length off = 1.11 m m  is 
placed immediately behind the sample. Figure 2(e) shows 
the intensity distribution in the focal plane of the lens. The 
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FIG. 4. (a) Pair of head-to- 
head/tail-to-tail walls in a 
thin film with in-plane mag- 
netization. The actual lattice 
used in the computations is 
256 X 256 with a lattice 
constant of 50 A. The as- 
sumed film thickness is r = 
600 d; and the saturation 
magnetization of the sample 
is M, = loo0 emu/cm3. (b) 
Plot of the phase function 
@(x,y)vs x for a fixed (arbi- 
trary) value ofy. (c) Inten- 
sity distribution of the elec- 
tron beam in the Fresnel 
mode at a defocus distance 
of 0.37 mm. The circle 
marks the boundary of the 
beam. (d) Cross sections of 
the intensity distribution 
patterns in the Fresnel 
mode, corresponding to de- 
focus distances of 0.925 mm 
(solid curve) and 0.37 mm 
(dashed curve). (e) Inten- 
sity pattern in the focal 
plane of a lens with f 
= 1.11 mm. The lens is im- 
mediately behind the mag- 
netic film and the beam di- 
ameter in the plane of the 
specimen is 1.48 pm. (f) 
Foucault image of the pair 
of walls in (a), obtained by 
blocking the left half of the 
focal plane distribution in 
(e) and allowing the re- 
maining electrons to propa- 
gate a distance of 1.11 mm. 

two peaks of this distribution correspond to the two re- 
gions of uniform magnetization along y. A relatively weak 
line between the two peaks is also visible in Fig. 2(e). If 
one blocks the right half of the focal plane and allows the 
remaining electrons to propagate a distance of 1.11 mm, 
one obtains the intensity pattern of Fig. 2(f). This is the 
Foucault image normally obtained in practice, showing 
clearly the effect of removing the central portion of the 
beam by means of spatial filtering in the frequency space. 

shows the magnetization pattern for a pair of Bloch walls. 
In the case of Neel walls, what contributes to the image 
(and this is true for all modes of Lorentz microscopy that 
utilize electrons at normal incidence) is the component of 
magnetization along the y axis. As for the component 
along x, the Fourier transform of this component is every- 
where parallel to the frequency vector (T, thus making no 
contributions to Q(x,y). In the case of Bloch walls, the z 
component of magnetization is eliminated in the process of 
p X [p X m(x,y)] calculation. Once again, the y compo- 
nent is solely responsible for the phase delay imparted to 
the electrons, rendering a Bloch wall indistinguishable 
from a Neel wall. The above argument breaks down when 
the impinging electrons are no longer perpendicular to the 
surface of the specimen, raising the possibility to differen- 
tiate between the two types of wall at oblique incidence. 

B. Head-to-head and tail-to-tail walls 

Let us mention in passing that the results obtained Another simple magnetic structure is the 180” head-to- 
here for a Neel wall apply equally to Bloch walls. Figure 3 head (or tail-to-tail) wall, a pair of which are shown in 
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FIG. 5. (a) Pair of head-to- 
head/tail-to-tail walls on a nar- 
row track. (b) Plot of the phase 
function @(X,Y). The 
minimum/maximum values of 
the function are f 16.65 radi- 
ans. (c) Contour plot of 
cP(x,y). (d) Intensity distribu- 
tion corresponding to the 
Fresnel image at a defocus dis- 
tance of 0.925 mm. (e) Magni- 
fied view of the lower left comer 
of(d). 
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Fig. 4(a). The computed phase function @(x,y) for this 
wall pair at normal incidence is shown in Fig. 4(b). Figure 
4(c) is the corresponding intensity pattern in the Fresnel 
mode with 0.37 mm of defocus. Unlike the case of side-by- 
side walls, this Fresnel image contains identical patterns 
for the two walls. Each head-to-head or tail-to-tail wall 
whose magnetization remains in the plane of the sample 
gives rise to a bright line immediately following (or fol- 
lowed by) a dark line. Of course, one would arrive at the 
same qualitative conclusions following geometrical consid- 
erations based on the Lorentz law of force and the bending 
of electron trajectories. Quantitative descriptions of the 
line shapes and the exact contrast values, however, can 
only be obtained with a rigorous method based on the 
theory of diffraction, such as the one described in this pa- 
per. The solid and dashed curves in Fig. 4(d) show cross 
sections of the intensity pattern at defocus distances of 
0.925 and 0.37 mm, respectively. Increasing the defocus 
distance in the Fresnel mode clearly increases the contrast. 
Figure 4(e) is the intensity pattern in the focal plane of the 
lens with f = 1.11 mm. Blocking the left half of this 
pattern and allowing the remaining electrons to propagate 
a distance of 1.11 mm results in the intensity distribution 
of Fig. 4(f). This corresponds to the pattern obtained in 
the Foucault mode of imaging. 
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FIG. 6. (a) Zigzag head-to- 
head wall in a thin film with 
in-plane magnetization. The 
magnetization within the 
wall region is perpendicular 
to the plane of the film. (b) 
Computed cP(x,y) for a zig- 
zag wall with amplitude of 
0.2 pm and period of 0.426 
pm. Minimum and maxi- 
mum values of the function 
are - 6.47 rad and 

+ 6.54 rad, respectively. 

C. Head-to-head walls on narrow track 

An interesting experiment has been performed recently 
involving magnetic domains recorded on an etched track of 
finite width in a magnetic disk system.4 The Fresnel image 
obtained in the experiment shows not only the recorded 
transitions along the track, but also the distribution of the 
stray magnetic field on the edges of the track. The situation 
is depicted in Fig. 5(a) which shows a pair of head-to- 
head/tail-to-tail walls on a 0.64~pm-wide track along the x 
axis. The computed (normal-incidence) phase function 
@(x,y) for this magnetization pattern is shown in Fig. 
5(b) and a contour plot of @(x,y) appears in Fig. 5(c). 
With an electron beam of diameter 2.22 pm and a defocus 
of 0.925 mm the Fresnel image shown in Fig. 5(d) is ob- 
tained. Note how the stray field near the edges of the track 
would create alternating patterns of bright and dark in a 
photographed image. A magnified view of the lower left 
corner of this pattern is shown in Fig. 5(e). 

0241 

(c) Intensity distribution 
corresponding to the Fresnel 
image with 0.925 mm of de- 
focus. (d) Fresnel intensity 
pattern for a zigzag wall 
with an amplitude of 0.2 pm 
and a period of 0.213 pm. 
The defocus distance is 
1.295 mm. Only two periods 
of the zigzag are within the 
depicted region. (e) Con- 
tour plot of the pattern in 
Cd). 

-0241 
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D. Zigzag head-to-head wall 

Figure 6(a) shows a zigzag head-to-head wall in a thin 
film medium with in-plane magnetization. The direction of 
magnetization at the wall center is assumed to be perpen- 
dicular to the plane of the film. As indicated in the figure, 
the period and the amplitude of the zigzag are defined as its 
peak-to-peak separation along the wall and across the wall, 
respectively. For the computation results that follow, the 
zigzag amplitude was fixed at 0.2 pm. The case of a zigzag 
with the relatively large period of 0.426 ,um is shown in 
Figs. 6(b) and 6(c) which respectively depict the corre- 
sponding (normal-incidence) phase function @ (x,y) and 
the intensity distribution in the Fresnel mode with a defo- 

cus of 0.925 mm. The region of space shown in these fig- 
ures contains three full periods of the zigzag wall. If the 
zigzag period is now reduced to 0.213 pm, the pattern 
becomes more complex, as can be seen in the Fresnel pat- 
tern of Fig. 6(d) which has a defocus of 1.295 mm. [See 
also the corresponding contour plot in Fig. 6(e).] Note 
that the region depicted in Figs. 6(d) and 6(e) contains 
only two periods of the zigzag. 

Another possible structure for the zigzag wall is shown 
in Fig. 7(a) where, in contrast to the preceding case, the 
wall magnetization lies in the plane of the film. For numer- 
ical calculations, the zigzag amplitude and period were 
chosen to be 0.2 pm and 0.213 ,um, respectively. Figure 
7(b) shows @(x,y) at normal incidence for a region of 
space containing six periods of the zigzag. The correspond- 
ing Fresnel pattern with 1.295 mm of defocus is shown in 
Fig. 7(c) [see also the contour plot in Fig. 7(d)]. The 
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FIG. 7. (a) Zigzag head-to- 
head wall in a thin film with in- 
plane magnetization. The mag- 
netization within the wall region 
is also in the plane of the film. 
(b) Computed @(xg) for the 
zigzag amplitude and period of 
0.2 and 0.213 pm, respectively. 
The minimum/maximum val- 
ues of the function are f 9 rad. 
(c) Intensity distribution in the 
Fresnel image with 1.295 mm of 
defocus. Only two periods of the 
zigzag are within the depicted 
region. (d) Contour plot of the 
pattern in (c). 
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regions depicted in these figures contain only two periods 
of the zigzag. 

Finally, consider the pair of zigzag walls in Fig. 8 (a). 
Together, these walls create a winding stripe of reverse 
magnetization in the central region of the specimen. For 
numerical calculations, the walls were assumed to have 
zigzag amplitude of 0.2 pm, zigzag period of 0.213 pm, 
and center-to-center separation of 0.256 ,um. The phase 
function Q, (x,y) at normal incidence is shown in Fig. 8 (b), 
and the intensity pattern in the Fresnel mode with 0.925 
mm of defocus is shown in Fig. 8(c) [see also the contour 
plot of this intensity distribution in Fig. 8(d)]. 

E. Circular domain in a thin film with perpendicular 
magnetization 

with a defocus of 0.37 mm is shown in Fig. 9(c). The 
Fresnel pattern in this case is a bright ring whose radius, 
depending on the sense of magnetization within the wall, is 
either slightly less or slightly more than the radius of the 
magnetic domain itself. When the electron beam is incident 
at an oblique angle with pX = 0.5, p,, = 0 and pZ = 0.866, 
Figs. 9(d) and 9(e) are obtained. These figures show, re- 
spectively, the phase function @(x,y) and the Fresnel pat- 
tern with 0.37 mm of defocus. Note that the Fresnel pat- 
tern in this case is no longer symmetric with respect to the 
center of the domain. The brightness of the ring has in- 
creased on one side and decreased on the other, in agree- 
ment with the experimental results reported for the 
magneto-optical recording media.3 

Figure 9(a) shows the magnetization distribution for a 
circular domain in a perpendicular medium. Inside the do- 
main the magnetization vector m is along - z whereas in 
the outside region m is along + z. In the state of minimum 
magnetostatic wall energy shown in Fig. 9(a), the wall 
magnetization everywhere is parallel to the wall itself. The 
computed Q, (x,y) for a domain of this type with a diameter 
of 0.64 pm and wall thickness parameter of A, = 100 A is 
shown in Fig. 9(b), and the corresponding Fresnel pattern 

A more complex wall structure for circular domains is 
depicted in Fig. lO( a). Here the wall is not in a state of 
minimum magnetostatic energy and shows several twists 
known as vertical Bloch lines. The corresponding (normal- 
incidence) phase function and the Fresnel pattern with 
0.37 mm of defocus are shown in Figs. 10(b) and 10(c), 
respectively. Figure 10(d) shows the Fresnel pattern at 
oblique incidence with p = (0.5,0, 0.866). Compared with 
Fig. 9(e), the bright and dark halves of the ring are some- 
what more pronounced in the present case. 
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FIG. 8. (a) Pair of zigzag walls 
in a thin film with in-plane 
magnetization. The magnetiza- 
tion within the wall regions is 
also in the plane of the film. (b) 
Computed @(x,y) for the zig- 
zag amplitude of 0.2 pm, zigzag 
period of 0.2 13 pm, and center- 
to-center wall separation of 
0.256 pm. Minimum and maxi- 
mum values of the function are 
- 11.9 and c 3.7 rad, respec- 

tively. (c) Intensity distribution 
in the Fresnel image with 0.925 
mm of defocus. (d) Contour 
plot of the pattern in (c). 
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FIG. 9. (a) Circular domain in a 
thin film with perpendicular magne- 
tization. The wall magnetization ev- 
erywhere is parallel to the wall it- 
self. (b) Computed Q&y) at 
normal incidence for a domain di- 
ameter of 0.64 pm and a waltthick- 
ness parameter A, = 100 A. The 
minimum and maximum values of 
the function are - 0.7 rad and + 
2.9 rad, respectively. (c) Intensity 
distribution for the Fresnel pattern 
at 0.37 mm of defocus. (d) Com- 
puted @(x,y) at oblique incidence 
with p = (0.5,0,0.866). (e) 
Fresnel image at oblique incidence. 
The defocus distance is 0.37 mm. 

F. Vortices in a thin film medium with in-plane 
magnetization 

Figure 11 (a) is a plot of four vortices at the centers of 
the four quadrants of the lattice representing a thin mag- 
netic film. (Four is the smallest possible number of vortices 
within the unit cell, given the constraint of periodic bound- 
ary conditions). The computed phase function Q(x,JJ) for 
this magnetization pattern is shown in Fig. 11 (b) and the 
Fresnel patterns at defocus distances of 0.925 mm and 0.37 
mm are shown in Figs. 11 (c) and 11 (d), respectively. The 
intensity patterns reveal that a counterclockwise vortex 
acts as a positive lens by bringing the electron beam to a 
focus, whereas a clockwise vortex, by diffracting the rays 
away from each other and creating a dark spot in the im- 
age, acts as a negative lens. Figure 11 (e) gives a magnified 
view of the central region of the diffraction pattern of Fig. 
11 (d). The corresponding magnetization distribution in 
this region exhibits a sort of saddle point behavior and the 
locations of intensity peaks and valleys near the center of 
Fig. 11 (e) are consistent with the expected geometrical 
behavior of the electrons in this region. 

(a) 

FIG. 10. (a) Circular domain in a 
X perpendicular film. The wall mag- 

ib) netization contains several twists or 
vertical Bloch lines. (b) Computed 
@p(x,y) at normal incidence for a 
domain diameter of 0.64 pm and a 

. wall 
W=-~b' 

thickness parameter A, 

d = 100 A. Minimum/maximum 
r yw values of the function are f 2.67 

radians. (c) Fresnel oattern at nor- . , 1 

(c) 
mal incidence with 0.37 mm of de- 
focus. (d) Fresnel image at oblique 
incidence with p = (0.5, 0, 0.866) 
and 0.37 mm of defocus. , 

G. Sinks and sources in thin film medium with 
in-plane magnetization 

Consider the magnetization pattern of Fig. 12(a) 
which consists of two “sinks” and two “sources” at the 
centers of the four quadrants of the lattice. Figure 12(b) 
shows the computed (normal-incidence) phase function 
@(x,y) for this magnetization distribution. In the vicinity 
of the sources and the sinks, the phase function is flat and 
featureless, although it shows complex structure near the 
saddle points. Thus a technique such as Differential Phase 
Contrast, which uses the electron microscope in the scan- 
ning transmission mode and attempts to reconstruct the 
state of magnetization of the sample point by point, will 
miss the sinks and sources altogether. That is not to say 
that other techniques fare better in this respect, but, by 
providing a global view, they might at least give clues as to 
the nature and the whereabouts of the sinks and sources. 
Figure 12(c) is the Fresnel image of the magnetization 
distribution of Fig. 12 (a) at a defocus distance of 0.37 
mm. Notice that only the boundaries between adjacent 
sinks and/or sources stand out in this picture. Figure 
12(d) gives a magnified view of the central region of this 
figure, where the structure of the boundary may be ob- 
served in some detail. Finally, Fig. 12 (e) shows the Fresnel 
pattern obtained at oblique incidence with 
p = (0.5,0,0.866). The sinks and sources which were ab- 
sent in the previous figure now make an appearance. 
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FIG . 11 .  (a )  F o u r  vor t ices in  a  
th in  f i lm wi th  i n -p l ane  magne t i -  
zat ion.  T h e  r e g i o n s  wi th  a n  ou t -  
o f - p l ane  c o m p o n e n t  of  magne t i -  
za t ion  (i.e., co res  as  wel l  as  
s ingu lar i t ies  in  b e t w e e n  the  vor -  
t ices) h a v e  a  G a u s s i a n  s h a p e  
wi th  l /e rad ius  of  5 0 0  A . (b )  
P lo t  of  t he  p h a s e  func t ion  
Q(x ,y )  w h e n  the  b e a m  is n o r -  
mal ly  inc ident  o n  the  spec imen .  
T h e  m i n i m u m / m a x i m u m  vaf-  
u e s  of  t he  func t ion  a r e  h 3 5 . 8 2  
rad ians .  (c)  Intensi ty pa t te rn  of  
t he  e lec t ron  b e a m  in  the  F resne l  
m o d e  wi th  0 . 9 2 5  m m  of  de focus .  
(d )  Intensi ty pa t te rn  in  the  
F resne l  m o d e  wi th  0 . 3 7  m m  of  
de focus .  (e )  Magn i f i ed  v iew of  
t he  cent ra l  r e g i o n  of  (d) .  

H. M a g n e tizat ion r ipp le  in  m e d i u m  with in -p lane  
m a g n e tizat ion 

T h e  m a g n e tizat ion pat tern in  Fig. 1 3  (a)  is ob ta ined  by  
a d d i n g  a  cer ta in a m o u n t of r a n d o m  no ise  ( r ipp le)  to a  
un i fo rm distr ibut ion of m a g n e tizat ion vectors. T h e  s imu-  
la ted r ipp le  is c rea ted  by  randomly  a n d  independen t l y  a d d -  
ing  a  va lue  in  the interval  (  -  2 0 ”, +  2 0 ”) to the or ien-  
tat ion ang les  of ind iv idua l  d ipo le  m o m e n ts. T h e  p h a s e  
funct ion in  Fig. 1 3  (b)  a n d  the Fresne l  i m a g e  in  Fig. 1 3  (c) 
co r respond  to the reg ion  w h o s e  m a g n e tizat ion is dep ic ted  
in  Fig. 1 3  (a).  A lso  s h o w n  is the contour  plot  of the Fresne l  
i m a g e  in  Fig. 13(d) .  Obvious ly ,  the re la t ionship  be tween  
the m a g n e tizat ion pat tern a n d  its Fresne l  i m a g e  is not  a  
s imp le  one .  This  is part ly d u e  to stray m a g n e tic f ields in  
a n d  a r o u n d  the sample ,  a n d  part ly the resul t  of interfer-  
e n c e  amongs t  the ne ighbo r i ng  rays of the e lect ron b e a m . 
T h e  complex i ty  of the re la t ionship  be tween  the m a g n e tiza- 
t ion r ipp le  a n d  its Fresne l  i m a g e  increases wi th increas ing  
spat ia l  f requency  of the pat tern,  mak ing  interpretat ions of 
the i m a g e  b a s e d  o n  s imp le  g e o m e trical cons idera t ions ex-  
ceed ing ly  unre l iab le .  
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FIG . 12 .  (a )  T w o  sou rces  a n d  
two  s inks in  a  th in  f i lm wi th  in -  
p l a n e  magnet i za t ion .  T h e  re -  
g i ons  wi th  ou t -o f -p lane  m a g n e -  
t izat ion (i.e., co res  as  wel l  as  
s ingu lar i t ies  in  b e t w e e n  s inks 
a n d  sou rces )  h a v e  a  G a u s s i a n  
s h a p e  wi th  I/e rad ius  of  5 0 0  b;. 
( b )  P lo t  of  t he  p h a s e  func t ion  
@ (x,y). T h e  m i n i m u m  a n d  the  
m a x i m u m  v a h r e s  of  @  a r e  -  4 .4  
a n d  +  4 .4  rad ,  respect ive ly .  (c)  
T h e  intensi ty  pa t te rn  of  t he  e lec -  
t ron  b e a m  in  the  F resne l  m o d e  
wi th  a  de focus  d is tance  of  0 . 3 7  
mm.  (d )  Magn i f i ed  v iew of  t he  
cent ra l  r e g i o n  of  t he  pa t te rn  in  
(c).  ( e )  F resne l  i m a g e  at  o b -  
l i que  inc idence .  T h e  b e a m  is 
t u r n e d  a w a y  f rom the  n o r m a l  by  
3 0 ’ (P,  =  0.5, pv  =  0, p r  
=  0 . 8 6 6 )  a n d  the  de focus  is 0 . 3 7  
mm.  

IV . C O N C L U D ING R E M A R K S  

A  power fu l  a n d  accura te  techn ique  for comput ing  the 
p h a s e  modu la t ion  of the e lect ron b e a m  in Loren tz  e lec t ron 
microscopy has  b e e n  descr ibed.  T h e  resul ts a re  qu i te  g e n -  
era l  a n d  can  b e  u s e d  to compu te  the e lect ron dif fract ion 
pat terns u n d e r  any  of the severa l  poss ib le  m o d e s  of Loren tz  
microscopy.  Numer ica l  examp les  w e r e  g iven  that cons id-  
e r e d  normal ly  inc ident  e lec t ron b e a m s  as  wel l  as  b e a m s  
inc ident  at a n  ob l i que  ang le .  These  examp les  ana lyzed  bo th  
the Fresne l  a n d  Foucau l t  m o d e s  of imag ing  as  wel l  as  smal l  
ang le  e lec t ron dif fract ion patterns.  O n  a  V A X  workstat ion,  
the calcu lat ion of e a c h  p h a s e  funct ion o n  a  2 5 6  X  2 5 6  
latt ice was  comp le ted  in  abou t  5 0  seconds.  C o m p u tat ion of 
the Fresne l  di f fract ion pat terns o n  a  5  1 2  X  5 1 2  latt ice 
requ i red  two fast Four ie r  t ransforms a n d  took a  total tim e  
of approx imate ly  2 .5  minutes.  
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FIG. 13. (a) The magnetization 
pattern in the central region of 
the film. The orientation angles 
of the dipoles deviate from the x 
axis by a random number in the 
interval [ - 20”, + 29. (b) 
Plot of 4(x$) at normal inci- 
dence. The minimum and the 
maximum values of Q are 
- 0.53 and + 0.55 rad, respec- 

tively. (c) Fresnel image of the 
magnetization pattern shown in 
(a). The defocus distance is 
0.925 mm. (d) Contour plot of 
the Fresnel pattern in (c). 
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