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ABSTRACT

Modulation constraints of practically any degree of complexity can be described by a state transition table with
a finite number fZ of states. Examples include all (d, k;c) codes (where (1 <2(k+l)(2c+l)), more general codes
with run-length limitations, and run-length limited codes which exclude certain bit-patterns. From the state
transition table we construct a trellis diagram for code words of arbitrary length L0. If desired, the trellis may
be confined in the beginning and/or at the end to a subset of states. We then show a simple method of
enumeration that assigns a number to each code word in the trellis according to its lexicographic order. All the
necessary information for enumerative encoding and decoding of binary data will be subsequently stored in an
array of size L0 x 12; both encoding and decoding can be achieved with a few simple operations using this
table. In short, arbitrarily long blocks of data can be encoded into sequences that satisfy arbitrary constraints,
with algorithms that are easy to implement. Since no additional constraints are imposed, the rates approach
Shannon's noiseless channel capacity in the limit of long sequences. We present ideas for correction of random
errors that occur in modulated sequences, so that errors in readout can be corrected prior to demodulation.
These post-modulation error correction codes are necessary when modulation code words are long, in which
case small errors can destroy large quantities of data. Also introduced in this paper is a simple, efficient
algorithm for burst-error-correction. The primary application of the ideas of this paper is in the area of data
encoding/decoding as applied in magnetic and optical data storage systems

1 . INTRODUCTION

The use of modulation codes in magnetic and optical data storage systems is widespread and the advantages of
modulation coding are well known17. Usually a 1 is used to represent a transition between the up and down
states of the recording waveform, while a 0 represents no change in the waveform. An unconstrained sequence
of l's and 0's, however, is not acceptable, nor is it desirable, in practice. For instance, a long sequence of
uninterrupted 0's results in loss of synchronization when the data is self-clocking. Or the imbalance between
the up and down states of the recording waveform may result in significant charge accumulation in the
electronic circuitry, thus forcing the system beyond acceptable levels of operation. The objective of
modulation coding is to create a one-to-one correspondence between sequences of user data (which are usually
streams of random binary digits) and constrained binary sequences. The nature of the constraints imposed on
the modulation signal must be determined by the system designer and is dependent on the particular
characteristics of the system under consideration. A typical set of restrictions imposed on the recording
sequence is the so-called (d, k;c) constraint. Here d is the minimum allowed run-length of zeros, k is the
maximum allowed run-length of zeros, and c is the maximum charge that the recording waveform is permitted
to accumulate. In addition, certain sequences of bits may be reserved for special purposes (such as
synchronization or signaling the beginning of a block) and thus banned from appearing in the modulated
waveform.

The minimum run-length constraint d is somewhat more subtle than the other constraints and needs further
elaboration. The physical separation between successive transitions on the recording medium cannot be made
arbitrarily small. The minimum distance between transitions is a function of the structural and/or magnetic
properties of the medium, as well as the characteristics of the read/write head. The gap-width of the magnetic
recording head and the wavelength of light in optical recording, together with the structural/magnetic features
of the recording medium, determine the minimum distance z between successive transitions. It is useful to
measure distance along the track in units of , so in the following discussion, density should be understood as
the number of bits per . Now, if there are no constraints on the minimum run length of zeros (i.e., if d =0),
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each modulation bit will occupy one interval of length i. Since the number of modulation bits is always
greater than the number of data bits, the overall recording density will become less than one data bit per £
On the other hand, if d # 0, one can pack d+l modulation bits in every interval of length £ When the code
parameters are chosen properly, the higher density of modulation bits could translate into higher density of
recording for data bits, so that the overall density will become greater than one data bit per . The price of
this increase in capacity is, of course, the reduced period of time available to each modulation bit. If r is
defined as the time that the read/write head dwells on an interval of length i, then the time window available
to each modulation bit will be r/(d+l).

The purpose of the present paper is to introduce a general algorithm for modulation coding with arbitrary
constraints. This algorithm which uses enumeration to encode blocks of data into constrained sequences, is
much more powerful than an earlier scheme (also based on enumeration) proposed by Tang and Bahl8. In
contrast to the latter scheme which applies only to (d, k) constraints, the new algorithm can handle any
constraint or set of constraints that can be expressed in terms of a state transition table. In addition, our
algorithm solves the cascading problem which complicated all previous schemes and required the addition of
"merging" bits between successive blocks.

In Section 2, we will give several examples of (d, k) and (d, k;c) constraints and their corresponding state
transition tables. We also give an example of a (d, k) code which excludes a specific pattern of bits for
synchronization purposes. Although the examples in Section 2 are for certain representative values of
parameters, the techniques used for constructing the state transition tables are quite general, and the reader
should be able to apply the methods to any set of parameters.

After the state transition table corresponding to a given set of constraints has been constructed, one must
choose a parameter L0 for the block length of the modulation code words. Any choice of L0 can be handled
by the algorithm, but longer code words are preferred since they give a capacity which is arbitrarily close to
Shannon's noiseless-channel capacity9 for the given set of constraints. The encoding and decoding routines are
based on enumeration10'11, and map blocks of user data of fixed length N0 to modulation code words of fixed
length L0. Both encoding and decoding routines utilize an array A of pre-calculated numbers. The array A has
dimensions L0 x (1 where Il is the total number of states in the state transition table. The mappings are of
fixed-to-fixed length block type, and the beginning state is always the same as the final state, so that errors
cannot propagate beyond the block boundaries. The trellis diagram, discussed in Section 3, helps in
understanding this point as well as in constructing the array A. The encoding and decoding algorithms are then
described in Section 4.

In conjunction with the proposed modulation technique, two error correction schemes will also be
described. The first type has to do with burst-error-correction and is discussed in Section 5. Here one takes
advantage of the fact that the position of a block of data affected by a long burst of errors is known to the
decoder, simply because modulation constraints within that block are seriously violated. A simple construction
based on parity check bits and capable of restoring the lost block will be introduced in Section 5. The second
type of error correction deals with random errors that occur rather infrequently and corrupt modulation code
words in a few, a priori unknown, locations. Some of these errors may be readily detectable (and perhaps even
correctable), because they violate the modulation rules. Depending on the severity of the constraints, however,
this kind of error correction may or may not have the desired power in practice. In any event, a Viterbi
decoder'214 can be used to find the closest code word (in the Hamming sense) to the readout sequence. In this
context, the applicability of Viterbi's algorithm for minimum distance decoding arises from the fact that
modulation coding is based on state transition tables. This point will be further elaborated in Section 6. The
other, and perhaps more powerful, alternative for random error correction within a modulated block is the use
of an appropriate block error-correcting-code, such as a Reed-Solomon code15'16. Here, depending on the
probable number of errors within a block of length L0, the ECC scheme generates a certain number of check
bits, say N1. These check bits do not necessarily satisfy the modulation constraints and, therefore, must
themselves be modulated. Let us denote by L1 the length of the block of N1 check bits after being modulated.
Since encoded blocks always begin and end in the same state, there shall arise no problems during recording
and readout if the block of length L1 immediately follows the block of length L0. In certain situations it might
be desirable to apply another level of error correction to the block of length L1, and to record the new set of
check bits after modulating them. Indeed the process may be repeated any number of times. After the
modulated block of data, followed by one or more blocks of modulated check bits, has been formed, one might
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add a special block of length L to signal the end of the stream. All in all, the sequence of user data of length
N0 has been mapped onto a sequence that satisfies the modulation constraints and has a total length L =L0 + L1
+ L2 + ... + L . In readout, this block of length L is separated into its sub-blocks, its various levels of error
correction are demodulated, and the corresponding errors, if any, are corrected. Finally, the block of length L0
is demodulated and the original N0 bits of user data are recovered. The details of this procedure are described
in Section 7.

Section 8 gives several examples of codes with various constraints and discusses their performance. The
final section contains some closing remarks, including a suggestion for experimentally determining the proper
set of modulation constraints for a given data storage device.

2. ThE STATE-TRANSITION TABLE

This section demonstrates, by way of examples, the construction of state-transition tables from the rules and
constraints that a modulation code must satisfy.

Example 1 : A (d, k) code is one in which the run-length of zeros has a minimum equal to d and a maximum
equal to k. Figure 1 shows the state transition diagram for a (I, 3) code. (Extension to arbitrary values of d and
k is straightforward.) A circle in this diagram represents a state and the identity of that state is written inside
the circle. The states in Figure 1 are S1, S, S3, and S4. Each state leads to at least one and at most two states.
If the transition from one state to another is indicated by a solid line then, during that transition, the encoder's
output will be 1. If, on the other hand, the transition is indicated by a broken line, the output will be 0. The
system thus begins in an arbitrary state, say S1, and with each clock pulse moves to another state, generating a
binary digit in the process. In the diagram of Figure 1 the only way out of S1 is through a broken line to S2.
thus at least one 0 must follow a 1 , which is always the output of the system on its way to S. Similarly, 54
can only lead to S with a solid line, which indicates that no more than three zeros can follow each other
without interruption.

Output 1

Figure 1. State-transition diagram for the (1 ,3) code.

Example 2 : The state transition diagram in Figure 2 corresponds to a (2, 7) modulation code with one
additional constraint. The sequence 1001001001001 is reserved for synchronization and thus cannot appear in
the output of the modulation encoder. States S9 through 17are added to the standard diagram for the (2,7)
code in order to accommodate this additional constraint.
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Figure 2. State-transition diagram for the (2,7) code excluding the synchronization sequence 1001001001001.
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Example 3 : A (d, k;c) code is a (d, k) code with charge constraint c, namely, the accumulated charge in the
circuitry during read/write operations must remain in the interval [-c, +c]. Vs in the sequence do not change
the charge but reverse the direction of its accumulation. For example, if there are n units of charge in the
system at a given instant of time and if the charge is on the rise, then immediately after a transition
(corresponding to a 1 in the sequence of modulation bits) the charge will still be n units but decreasing. Each 0
in the modulated sequence changes the value of the total accumulated charge by 1 unit in a direction
determined by the previous l's.

Let us consider the case of a (1, 3;2) code for which the charge is allowed to be either +2, +1, 0, -1, or -2
units. The state diagram for this code is shown in Figure 3 where Sm1 is defined as the state corresponding to
a sequence of m successive 0's after the latest 1, having n units of charge, and with the direction of charge
accumulation being "up". If the system begins in S001 or some states such as S021, S121, etc. will never be
reached. These states are shown as broken circles in Figure 3.
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Figure 4. Trellis diagram for the (1 ,3) code with block length L0 = 7. The initial and final states are both
chosen to be S1.

Once the trellis has been constructed, various code-words of the modulation code may be obtained by
simply following a connected path on the trellis between the initial state and the final state. There is a one-to-
one correspondence between the connected paths and the acceptable modulation code words. To convert a path
into a code word, simply replace each segment of the path with a 1 or a 0, depending on whether that segment
is a solid line or a broken line. To find the path corresponding to a given code word, start at the initial state
and move to the next state either along a solid line or along a broken line, depending on whether the next digit
of the code word is a 1 or a 0. In Figure 4 there are five complete paths, indicating that there are only five
code words of length L0 = 7 which satisfy the (1 ,3) constraint, while beginning and ending in S.
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3. THE TRELLIS DIAGRAM

The Trellis diagram is obtained by replicating the state diagram in time. Figure 4 shows the trellis for the state
diagram of the (I ,3) code discussed in Example 1. Only seven time steps are shown in the Figure; thus this
particular diagram corresponds to a modulation code of length L0 = 7. Transitions from a state at time t to a
state at time ti-i are indicated both with solid lines (representing a 1 output) and broken lines (representing a 0
output). The initial state being chosen as S, this is the only state at t = 0 that can connect to states at t = I.
Like the initial state, the final state can be selected arbitrarily. In fact, one may choose to end in any subset of
states (except for the empty subset, of course). In this paper we shall assume that the initial and final states are
one and the same in all cases. Accordingly, the final state in Figure 4 is also S1. This assumption will help
simplify the discussion without seriously restricting the scope of the work. It should be emphasized, however,
that our particular choice of the final state is by no means essential for the proposed encoding and decoding
schemes.
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We now assign a number to each state S in the trellis. This number shall represent the total number of
connected paths between S and the final state. To this end, we begin at the last column of states in the trellis
and assign the number 1 to those states that are acceptable as final states. Unacceptable states in this column
will receive the number 0. In our example the only acceptable final state is S1 which, as shown in Figure 5, is
the recipient of the number 1 in the last column. Next we move one column to the left and to each state S in
this new column, assign the sum of the numbers assigned to the states immediately to the right of S and
directly connected to it. By moving to the left one column at a time and repeating the above procedure, we
obtain the desired number for every state in the trellis. Note, in particular, that the number associated in this
manner with the initial state is the total number of acceptable modulation code words. Figure 5 shows the end
result of these assignments for the trellis of Figure 4.

\me
State'\ 0 1 3 4 6

Si

S3

S4

Figure 5. Trellis diagram of Figure 4 with a number assigned to each one of its states. The number assigned
to S is the total number of continuous paths between S and the final state.

Next we assign a second number to each state in the trellis. This second set of numbers, which is derived
from the first set, will be used in encoding and decoding. In fact the first set will no longer be needed after
the construction of the second set has been completed. To obtain the second set we start with the leftmost
column of the trellis and assign a number to each state S in that column. The number assigned to S will be 0
if there are less than two lines connecting S to its adjacent states on the right. Thus if a solid line only, or a
broken line only, or no lines at all lead from S to the next state, the number assigned to S shall be 0. If, on
the other hand, S moves to the next state via both a solid line and a broken line, we follow the broken line to
the corresponding next state, say S, and use the number previously assigned to 5' (that is, the total number of
connected paths between 5' and the final state) as the new number for S. By moving to the right, one column
at a time, and repeating the above procedure for all the states in each column, we obtain a complete trellis with
new numbers assigned to each state. Figure 6 shows this trellis with new numbers derived from the trellis of
Figure 5.
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Figure 6. Trellis diagram of Figure 5 with a different number assigned to each one of its states. See the text
for a description of the assigned number.

A zero assigned to a state S in the new trellis indicates either that S does not belong to any path that
connects the initial state to the final state, or that there is only one path that leads out of S. When a number
other than zero is assigned to a state S. it represents the total number of paths that begin at S with a broken
line and reach the final state. The set of numbers assigned to the states in this trellis can be stored in an array
A of dimensions L0 x 1) where L0 is the block length of the modulation code words and 0 is the number of
states in the state transition table. The array A and the state transition table are all that is needed for
modulation encoding and decoding.

4. ENCODING AND DECODING ALGORITHMS

In this section we describe enumerative encoding and decoding algorithms based on the methods described in
the preceding section. Consider all possible modulation code-words of length L0 as obtained, for instance, by
identifying all the continuous paths of a given trellis diagram. These code-words may be arranged according to
their lexicographic order, just as English words in a dictionary are arranged alphabetically. In fact alphabetical
ordering of the code-words is easier since their alphabet consists only of two letters, 0 and 1, and all the words
have the same length L0. Denote the total number of code-words by M0, and to each code word assign a
unique integer (between 0 and M0 - 1) that represents its position in the above lexicographic order. This is
called enumeration and in the following we shall describe a systematic method of obtaining this unique integer
for a given code word (i.e., decoding), as well as identifying the code word from the knowledge of its
corresponding integer (i.e., reverse enumeration or encoding).
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Let us first consider the decoding procedure, since it is slightly easier to describe. With reference to the
final trellis diagram discussed in the previous section, a given code-word is simply a connected path between
the initial state and the final state. Starting at the initial state and moving along this path, we visit a total of
L0 + 1 states. Those states that lead to the next state with a broken line must be ignored, while for the
remaining states, (i.e., those that lead to the next state with a solid line), the corresponding numbers on the
trellis must be added. The reason being that each time we move along a solid line (which corresponds to a 1 in
the code-word), we leap over all the code words that are the same until then but have a zero at that junction.
Therefore the lexicographic number of the code-word that follows the solid line must increase by the number
of code-words that take the broken line at the junction. The sum thus obtained is the lexicographic number of
the code-word under consideration and the decoding is therefore complete. Table I illustrates the decoding
process for all the code-words contained in the trellis diagram of Figure 6.

Code-Word Number

0101001 3 +1 +0 = 4
0100101 3 +0 +0 = 3
0001001 0 +0 = 0
0010101 1 +1 +0 = 2
0010001 1 +0 = 1

Table I. Code-words corresponding to the trellis of Figure 6 and their respective number in the
lexicographic order.

As for the encoding process where the lexicographic order number m (0 � m sM0 - 1) of a code-word
must be translated into the code-word itself, we refer to the same trellis diagram as before, on which we
identify the path corresponding to the desired code-word as follows : Define a variable n and set n =m at the
outset. Then start at the initial state of the trellis and follow either a broken line or a solid line to the next
state : When there is only one line leading to the next state, there is obviously no choice and that line must be
followed. However, when there is a choice, compare the current value of n with the number n5 assigned to the
current state S of the trellis. If n >n follow the solid line and replace n with n - n. If, on the other hand,
n < n follow the broken line without modifying n. The process continues until the final state is reached, at
which point the value of n is zero and the path taken corresponds to the desired code-word.

In using these algorithms for modulation and demodulation of binary user-data it is usually desirable to
have a fixed-length block of data mapped onto a fixed-length modulation code-word. If the block length of
the user-data is denoted by N0, the total number of code words M0 must be greater than or equal to 2N0
Therefore N0 must be chosen as the largest integer which is less than or equal to 1og10.

5. BURST-ERROR CORRECTION

There are at least two ways to recognize that a block is affected by a burst of errors. First, when the read
signal corresponding to all or a portion of the block has an unusual waveform, that is, when the waveform is
atypical of sequences of 0's and l's. Second, when there is significant and frequent violation of the modulation
constraints within the block. These are examples of the so-called erasure channel where, by virtue of the
knowledge of the position of error, significant gains in error correction capability of codes may be achieved.
In any event, if one or more blocks within a sector are identified as erroneous, it will be possible to restore
them with a simple scheme and with a relatively small penalty in overhead. The following example is based on
realistic numerical values and explains the proposed method of burst-error-correction.
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Suppose that the 512 user Bytes that typically comprise a sector on a disk are divided into 64 blocks of 64
bits each. Subsequently, each block is modulated by some appropriate modulation code and, after additional
bits for random error correction and synchronization have been added, we may presume that its length, in units
of modulation bits, has become L = 150. Suppose now that the longest possible burst that can occur within this
sector has length 1050 (in units of modulation bits), and that the probability of two or more bursts occurring
within a given sector is negligible. The maximum number of consecutive blocks that can be affected by the
burst is therefore eight, which corresponds to 512 successive user bits. The proposed burst-error-correction
scheme divides the 512 Bytes of user data (prior to modulation) into eight segments of length 512 bits each,
and generates a ninth segment (also of length 512 bits), consisting solely of parity check bits. The n'th parity
check bit (1 � n � 512) is chosen such that the n'th bits from all nine segments satisfy the condition of even (or
odd) parity. Figure 7 shows the schematic of a circuit that may be used to generate the parity bits in the
general case. The total length of the block in this figure is N, the length of each sub-block is K, and CBG
stands for Check-Bit-Generator. In the above example, therefore, N =4096 and K = 512, resulting in an
encoded total length of 4608 bits (user data plus parity bits). It is not difficult now to see that any contiguous
group of 512 bits or less (out of this 4608-bit-long block) that is lost to a single burst of errors can be
recovered (irrespective of the location of the burst along the block) by virtue of the fact that only one out of
every nine bits that originally satisfied the parity conditions are now missing. Thus by adding 512 simple
parity bits to the original 4096 bits of the user data, dividing the entire block into 72 sub-blocks of 64 bits
each (which sub-blocks are then independently modulated), and storing the resulting 72 modulated blocks all in
one sector, we have achieved immunity against single bursts that can be as long as 9.72% of the total length of
the sector.

In the above example, the parity bits were generated before modulation. A more efficient method of
implementing this burst-error-correction technique, however, would generate the parity bits after modulation.
In this case, because they do not satisfy the modulation constraints, the parity bits must be modulated
separately before being recorded (see Section 7 for more on this issue). Also, some intelligence must be built
into the decoder in order to enable it to recognize the boundaries of the burst. Merits and demerits of this
approach are rather straightforward to fathom the subject therefore does not warrant an extended discussion in
this paper.

___________ Parity4 Total Shift Register Length = N Bits

Figure 7. Schematic diagram showing possible implementation of a burst-error-correction encoder. The
block of user-data has length N and fills a shift register of the same length. For clarity of
representation, this shift register is shown here divided into sub-sections of length K; N and K
being chosen such that N is divisible by K. Check-bits are generated by the check-bit generators
(CBG's) and stored in another shift register of length K. The input to the n'th CBG comes from
the n'th bit of each and every sub-section, and the output comprises the n'th bit of the parity
check register. The resulting (N+K)-bit-long block (user-data followed by the checkbits) is
subsequently sent to the next stage for modulation, where no distinctions will be made between the
actual user data and the check bits. In decoding, a contiguous group of erroneous bits (of length K
or less), occuring anywhere within this (N+K)-bit-long block, can be corrected, provided that the
decoder is informed of the location of the burst.
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6. VITERBI DECODING

Because modulation constraints have been expressed in the form of state-transition tables, it is rather
straightforward to apply Viterbi's algorithm''4 during the readout process in order to identify a code-word
that not only satisfies all the modulation constraints, but also is closest to the read-back waveform for a given
measure of distance (say, in the Hamming sense). Some errors, but not all, can be recovered in this way. The
more restrictive the modulation constraints become, the better will be their error-correction capability. In fact,
a fruitful subject for future research may be to look for modulation constraints that also allow a significant
degree of error-correction without imposing severe penalties on the rate of the code. Some work along these
lines has already been reported whereby the advantages of convolutional coding are sought to be combined
with those of modulation codes17. During numerical experiments we found that (d, k;c) constraints are not
powerful enough for the purpose of correcting random errors. The exception was the case of very small c
which unfortunately results in small rates.

7. RANDOM-ERROR CORRECTION

The algorithms described in Section 4 are capable of encoding and decoding arbitrarily long blocks of data.
The problem, from a practical standpoint, is that a single error in a given block is usually sufficient to cause
incorrect decoding of that entire block. This is the well-known problem of error propagation which, in the
past, has been "overcome" by choosing codes with short code words, and by preventing the errors from
propagating beyond the boundaries of the words within which they occur. A possible solution to the error
propagation problem is to apply the error-correcting code to the modulated sequence itself and not, as is
common practice today, to the data sequence prior to modulation. In other words, to eliminate the problem of
error propagation for codes which have long block lengths, we suggest the use of post-modulation error
correction coding. The following example should help clarify the concept.

Let a block of modulation code of length L0 be error correction coded for a certain number of errors, say v.
If the Reed-Solomon algorithm15'16 is used for the purpose, it will generate 2v check-bits (to be appended to
the original block of length L0), but the original block itself will not be modified. These check bits, of course,
do not satisfy the modulation constraints and will have to be modulated before appending. There shall be no
problems in appending one modulated block to another in this manner, however, since individual blocks always
begin and end in the same state. It is even possible to use a different modulation scheme for the check bits;
one that is less susceptible to random errors than the modulation scheme used for the user data block. In this
case the check bits may not be packed quite as efficiently as the data bits, but they occupy only a small
fraction of the total storage area and, therefore, the sacrifice may not be too costly. Of course it is always
possible to apply yet another ECC to the block of modulated check bits, and to repeat the process until the
integrity of the data after going through modulation and demodulation is assured. Figure 8 shows
schematically how a two level post-modulation error correction encoder of this type may be implemented.

8. NUMERICAL RESULTS AND DISCUSSION

A computer program has been developed to generate the state-transition tables for arbitrary (d, k) and (d, k;c)
codes, and to implement the proposed enumerative encoding and decoding algorithms. Some of the results
obtained with this program are summarized in Tables II and Ill.

Table II corresponds to three codes with d = 2 and k = 7. It shows possible block-lengths of the user data
(N0) for several lengths of the code words (L0). The initial and final conditions for all three codes in this
Table are such that each code-word ends in a I , and begins as though the previous block ended with a 1. Code
I is the (2, 7) code with no restrictions other than those imposed by the initial and final conditions. The total
number of states for this code is 8, and its theoretical maximum rate (Shannon's noiseless capacity) is 0.5 171.
Notice that in Table II the rate increases with increasing L0, and at L0 = 300 the achievable rate is already
equal to 0.510, which is somewhat better than the rate for the currently standard (2, 7) code1. Code II is
similar to code I except that the string 1001001001001 is prohibited from occurring in its code words. The
state-transition table for this code, described in Example 2 of Section 2, consists of 17 states. Note that the
extra constraint has reduced the code rate by only a small amount. Code III is the (2, 7;8) code with the
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USER

Figure 8. Schematic diagram showing a possible implementation of a two level pOst—modulation error
correction encoder. The block of user-data of length n, placed in a shift register of the same
length SR (n), is sent to Modulator #1. Subsequently, the m modulated bits are error correction
coded (ECC1) and p1 additional bits (the first-level check-bits) are generated. These check-bits
are then modulated by Modulator #2 and converted into p bits. Next, the modulated check-bits
are error-correction coded, giving rise to yet another p2 check-bits at the output of ECC2. Finally,
these second-level check-bits are modulated and yield js2 bits at the output of Modulator #3. The
final code-word in this example consists of the m modulated user-bits, followed by p modulated
first-level check-bits, followed by p2 modulated second-level check-bits.

terminal states chosen such that, in addition to satisfying the previous boundary conditions, each code-word
begins and ends with zero charge. The total number of states for this code is 210, and its theoretical maximum
rate is 0.501 1 As can be seen in Table II, the achievable rate increases with increasing L0, and for L0 = 300
the rate of the code is 0.483.

Table III corresponds to two codes which both have d = 1 and k = 6. Again the initial and final conditions
are such that each code word ends in a I , and begins as though the previous block ended with a 1. Code IV is
the (1 ,6) code with no restrictions other than those imposed by the initial and final conditions. The total
number of states for this code is 7, and its theoretical maximum rate is 0.669'. Notice that at L0 =200 the
achievable rate is already equal to 0.660. Code V is the (1, 6;8) code which, like code ifi, begins and ends in a
state with zero charge. The total number of states for this code is 194. Clearly, the achievable rate increases
with increasing L0 and, for L0 = 300, the rate of the code is 0.637.
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Modulation User-Data Block-Length (N0)
Block-Length (L0) Code I Code II Code III

50 23 22 19
100 49 48 44
150 75 74 70

200 101 100 95

250 127 125 120

300 153 151 145

Table II. Comparison among three codes with d = 2 and k = 7 for different code-word lengths L0. Code I is
the (2, 7) code with no restrictions other than those imposed by the initial and final conditions.
Code II is the same as code I except that the string 1001001001001 is prohibited from occurring in
the code-words. Code III is the (2, 7;8) code with each code-word beginning and ending with zero
charge. The initial and final conditions for all three codes are such that each code word ends in a 1
and starts as though the previous block ended with a 1.

Modulation User-Data Block-Length (N0)
Block-Length (L0) Code IV Code V

50 31 27
100 65 60

150 98 93
200 132 125

250 165 158

300 198 191

Table III. Comparison between two codes with d = I and k = 6 for different code-word lengths L0. Code IV
is the (1 ,6) code with no restrictions other than those imposed by the initial and final conditions.
Code V is the (1 ,6;8) code with each code-word beginning and ending with zero charge. The initial
and final conditions for both codes are such that each code-word ends in a 1 and starts as though
the previous block ended with a 1.

9. CONCLUDING REMARKS

In this paper we have described methods and algorithms for the modulation and error-correction-coding of
unconstrained streams of data. The intended application of these ideas is in the general area of magnetic and
optical data storage. In the course of this exposition we have avoided abstractions and rigorous mathematical
statements in order to convey the beauty and the power of the concepts to the broadest possible audience.

The examples given so far have concentrated on known classes of modulation codes, but the proposed
techniques are much more powerful than their predecessors and should be applied to new problems and in new
directions. For instance, a possible approach to the optimal design of constrained sequences for a given data
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storage system might entail the experimental determination of curves similar to those shown in Figure 9.
Given a particular storage device and for a given clock cycle T, one must experiment with pulses whose
durations are integer multiples of T. Recording and reading these pulses under realistic conditions, one
obtains, after a fair number of trials, upper and lower bound curves for the length of the readout pulse, as
shown in Figure 9(a). Run-lengths which do not overlap each other after being recorded and then retrieved,
are readily identifiable from these curves, as shown in Figure 9(b). The correct set of constraints for such a
system is now given by the collection of these non-overlapping run-lengths. For the imaginary system
characterized by the curves of Figure 9 the acceptable run-lengths are 4, 8, 12, 20, . Once an acceptable set
of run-lengths has been identified the state transition table can be constructed and the enumerative encoder
and decoder implemented. The choice of maximum run-length is dictated by the acceptable level of
complexity for the encoder and decoder. In fact the choice of the clock cycle T is not arbitrary either, and one
might try to optimize it by trial and error, keeping in mind that although smaller values of T result in higher
densities, the complexity of implementation grows with decreasing clock cycle.

The ideas of enumerative modulation coding and post-modulation error correction described in this paper
have removed some of the barriers to achieving high density storage by allowing the potential of the media and
systems to be fully realized. It is hoped that this exposition will facilitate the transfer of these ideas to practice.
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Figure 9. (a) Presumed upper and lower bounds on the lengths of various recorded pulses after readback.
The horizontal axis represents the length of the pulse before recording. The durations of both
read and write pulses are multiples of the clock cycle T. These curves can be obtained for a given
system by repeatedly recording marks of various lengths under realistic conditions and monitoring
the corresponding signal in readout. (b) Method of selecting run-lengths for modulation. The first
accepted run-length is the shortest pulse for which the lower bound is non-zero. Other run-
lengths have the shortest possible length that allows them to avoid overlap.
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