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Classical diffraction theory is used to investigate the effects of high numerical aperture on the focusing of coherent
light. By expanding the diffracted beam in plane waves, we show that the lens action can be expressed as a
succession of three Fourier transforms. Furthermore, polarization effects are included in the model in a natural
way. Some numerical results of the theory are also presented.

1. INTRODUCTION

To achieve high resolution in many optical systems of practi-
cal interest, it is necessary to use high-numerical-aperture
objectives. For instance, in optical data storage one must
focus the laser beam to extremely small spots for recording
and readout of information. For a well-corrected lens, the
limit of resolution is the radius of the Airy disk, which is
equal to 0.61\/NA. Here X is the wavelength of light and
NA = sin (a/2) is the numerical aperture, with « being the
angle subtended by the exit pupil at the focal point. Stan-
dard approximations of the classical diffraction theory can
be used to describe the field pattern around the focal plane,
but, strictly speaking, these approximations are valid only
for NA 5 4/Nf. When the focal length is f = 4000\, for
example, the upper limit of validity of the standard approxi-
mations is NA = 0.125.

Hopkins! has shown that a more rigorous treatment yields
almost the same results as the approximate method, provid-
ed that the aperture radius is taken to be fNA {as opposed to
f tan[arcsin(NA)]}. The Hopkins method, however, is rela-
tively complicated, and some of its assumptions are open to
question. Moreover, it is not easy to generalize his treat-
ment to situations in which the incident distribution is non-
uniform. Other authors have studied the focusing problem
in various regimes with different approximations, but, to our
knowledge, there does not exist a comprehensive method of
computing diffraction patterns that does not require ap-
proximations of one sort or another to the fundamental
diffraction integral. To be sure, the fundamental integral of
the classical theory is itself an approximation to the physical
reality since it does not include the effect of the screen on the
aperture field distribution. This approximation, however,
turns out to be quite acceptable as long as the dimensions of
interest are not comparable to or smaller than a wavelength.

In this paper we present a formulation of the Fresnel-
Kirchhoff diffraction theory that allows polarization effects
to be incorporated in a natural way. We show that the
diffraction integral can be exactly evaluated in the near-field
regime with two successive Fourier transforms; in the far-
field regime, where the exact computations become imprac-
tical, the steepest-descent approximation applies to the in-
tegral, yielding the Fraunhofer formula that requires only
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one Fourier transform. Next we consider diffraction in the
presence of a lens and show that for small numerical aper-
tures, where the curvatures introduced by the lens are slight,
the propagation formulas of Fresnel or Fraunhofer are still
applicable. For large numerical apertures, however, these
methods become excessively time consuming; in this regime,
we factor out the fast-oscillating terms of the curvature
function and obtain a practical formula for computing dif-
fraction patterns using three successive Fourier transforma-
tions.

The organization of this paper is as follows: Section 2
describes the formulation of diffraction theory, including
polarization, using plane-wave expansion of the incident
distribution. Sections 3 and 4 are devoted to propagation in
the far-field and near-field regimes, respectively. In Sec-
tion 5 the effect of focusing on the distribution around the
focal plane is discussed; also, some of the results are com-
pared with the experimental or theoretical works of other
authors. Results of numerical computations are presented
in Section 6.

2. THEORY OF DIFFRACTION

In this section we introduce the framework for the analyses
presented in the rest of the paper. Our approach to diffrac-
tion theory is only slightly different from the classical ap-
proach based on the Fresnel-Kirchhoff formulation,? and
the results can be shown to be identical with those of the
classical theory. The advantages of the adopted approach
are that the range of validity of various approximations is
easily identified and that extensions to situations in which
these approximations are no longer applicable become
straightforward; moreover, polarization effects can be in-
cluded in the theory in a natural way. The approach is
based on the plane-wave expansion of the incident distribu-
tion and the eventual recombination of the propagated
waves.

Consider a plane, monochromatic wave of wavelength A,
traveling in the direction of the unit vector o = (o, Oy, 02).
The space-time dependence of this wave is given by

A(x,y,2,t) = Ay expli(2n/N) (xo, + yo, + 20,)]exp[—iwt].
(1)
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Fig. 1. Prism as a diffraction grating: A plane, linearly polarized
incident beam is diffracted into a plane wave propagating in the
direction ¢ = (o, oy, 5;). The polarization of the outgoing beam is
related to the polarization of the incoming beam and the orientation
of the prism as described in the text.

The polarization is in the plane perpendicular to o but is
otherwise arbitrary. Ignoring the time dependence for the
time being and confining our attention to the plane Z = 0, we
find that the amplitude distribution is given by

A(x, y) = Ag expli(2r/N)(x0, + ya,)], (2
where 0,2 + 0,2 < 1.

Now, assuming an arbitrary distribution t(x, y) in the
plane Z = 0, define the Fourier transform of t(x, y) as

T(s,,S,) = j j

.. .
t(x,y)exp[—i2n (xS, + ySy)]dxdy. 3)

The inverse Fourier-transform relation then yields

5,9 =3 [ [ om0

X expli@r/N) (o, + yo)ldodo,.  (4)

Comparing Egs. (2) and (4), one concludes that ¢{x, y) is the
superpositon of plane waves propagating in various direc-
tions. The amplitudes of these plane waves are determined
by the Fourier transform of ¢(x, y). Of course, there is the
restriction on (oy, oy) that o, + ¢,2 must be less than unity,
but the components of t(x, y) that correspond to (os, gy)
beyond the unit circle are, in fact, evanescent waves that do
not carry energy and do not travel more than a few wave-
lengths.2 Consequently, except in the immediate neighbor-
hood of the plane Z = 0, the representation of t(x, y) as the
superposition of plarie waves is valid.

Turning now to the effects of polarization, let us assume
that the incident beam is a linearly polarized plane wave,
traveling in the Z direction, with a polarization vector along
X. To determine the polarization of the diffracted beam
along the vector ¢ = [0y, 0y, (1 — 0.2 — 0,%)1/2], imagine a
prism (which happens to be the simplest diffraction grating)
inserted between the incoming and outgoing plane waves, as
shown in Fig. 1. Now consider the plane formed by the
vector o and the Z axis. The component of the incident
polarization vector perpendicular to this plane retains its
direction and becomes the s component of the deflected
beam. The projection of the incident polarization onto the
above plane, however, is reoriented as the beam goes through
the prism and becomes the p component of the deflected
beam. These two components are given by
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s component = |o,/(c,2 + 0,272,
p component = |¢, (s 2 + Jyz)—1/2_

When the deflected beam arrives at the plane Z = z, it will
have components of polarization along the X, Y, and X axes.
These components will be denoted ¥,, ¥,, and ¥, and are
given by

[o_xZ (1 — sz _ Uy2>1/2 + O,y2]

= ’ (5a ‘
¥ O'xz + ay2 )
—-axay[l -(1-02- 0y2)1/2] (5b)

7 0’x2 + (ryz
\Pz =0y (5¢)

where it can be verified that ¥,2 + ¥,2 + ¥,2 = 1,
Combining Egs. (1), (4), and (5), one arrives at the follow-
ing expression for the distribution of light at Z = z(:

ta(x, ¥, 2) = N7 ”

a,2+ afsl

¥ (0, ay)T(ax/}\, ay/)\)

X expfi(2m/N[xa, + yo, + 2o(1 — 0,2 — 0, )]}

X do,de,, (6)

The subscript « in Eq. (6) indicates the polarization compo-
nent of the final distribution and could be x, y, or z.

Equation (6) is our basic diffraction equation and, as
shown in the following sections, is equivalent to the Fresnel-
Kirchhoff equation in various limits. The restriction im-
posed on the domain of integration in Eq. (6) results in a
power-transmission coefficient n less than unity. This coef-
ficient is defined by

]
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Fig. 2. Power-transmission coefficient for a circular aperture ver-
sus the normalized aperture radius. The inset shows the transmis-
sion coefficient obtained from the vector Smythe-Kirchhoff ap-
proximation according to the following equation: 7 =1 — (A\4=R)
SEEN Jo(x)dx.
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J j IT(a,/N, 0,/N)do,da,
0, 2+0,251

n= )

T
jj IT(a /A, 0,/MPdo,do,

For a circular aperture of radius R, illuminated with a nor-
mally incident plane wave, the transmission coefficient cal-
culated from Eq. (7) is

1
n= [ (2/%)J 2@rRe/Ndx = 1 — JX2rR/N) — I 22xR/N).
0

(8)

Joand J; are Bessel functions of the first kind. Figure 2isa
plot of n versus R/\. The small-aperture limit in this figure
is not expected to be correct, since in deriving Eq. (8) we
have ignored the effect of the screen on the field distribution
within the aperture. The inset in Fig. 2 shows the corre-
sponding curve obtained from the vector Smythe-Kirchhoff
approximation.? The two curves are in good agreement as
far as general behavior is concerned. Small differences are
due to the fact that the latter curve accounts for the (con-
ducting) screen and, in part, to the approximate nature of
this curve.

3. FRAUNHOFER OR FAR-FIELD
DIFFRACTION

To derive the far-field diffraction formula from the results of
the preceding section, consider the function

W(o,, 0y) = x0, + yo, + 2,(1 — 0,2 — 0, )12,
which appears in the exponent of the integrand in Eq. (6).
This function has a saddle point at (o0, 0y0), where
00 = 2/ (22 + y? + 2,212,
ay0 = y/(x% + y* + zH) V2
These are the angular coordinates of the point (x, y) in the
observation plane as observed from the center of the aper-

ture. Around this saddle point, the function W can be
approximated as '

W(o,, 0,)/(x% + y2 + 2HY2 = 1 = Y,[1 + (x/2)%] (0, — 0,,)?
= (xy/2") (0, = 0, )0, — 0,,) — o[l + /294 (0, = 0,,)%
)

Using the method of steepest descent (see Ref. 2, App. III)
and replacing for the exponent of the integrand in Eq. (6)
from Eq. (9), one obtains

exp[i(2m/M) (x? + y% + 2,9

)Y, = ~(i/\
to(x, ¥, 2g) @n zol1 + (x% + yH /2,

XV (0,0, 0,0) T(a,0/N, ay6/N). (10)

Equation (10) is the well-known Fraunhofer diffraction for-
mula*® (except for the polarization factor ¥,). Note that

this result is obtained directly from Eq. (6) by using the-

steepest-descent approximation without the need to go
through the more complicated Kirchhoff theory.

The validity of the steepest-descent approximation is, in
general, guaranteed if zq is much larger than the linear di-
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mensions of the initial distribution and if the observation
point (x, ¥) is not far form the origin in the observation
plane. For the purpose of comparing the Fraunhofer formu-
la with the Fresnel patterns obtained in the next section, we
rewrite Eq. (10) below, using dimensionless parameters x’,
¥’, 2¢’ to represent coordinates in units of wavelength:

exp(i27z,/)
£ O N, Azy) = —i bR

7

29
X exp(i2mzg/{[1 + (x' 2+ y’ D/zy V2 — 1))
X (1= 0,5" = 0,09 ¥ (0, 040)
X \2T(0 /A, 0,0/M)], (11a)
where
FO, W), o lters< 1
0, otherwise

Note that the second exponential term in Eq. (11a) is a
curvature phase factor with radius of curvature 2.

)\_2T(ax/)\, ay/A) = { (11b)

4. FRESNEL OR NEAR-FIELD DIFFRACTION
In general, Eq. (6) can be written as
t(Ax’, Ny', Az) = exp(i2wzy)

X FNT(o,/N, 0,/NY (o, 0,)

X expfi2rzy/[(1 — 0,2 — Gyz)l/ 2- 11,
(12)

with T(o,/), o,/\) given by Eq. (11b). This is the general
statement of the Fresnel diffraction.

As an example, consider a circular aperture of radius R =
5, illuminated with a plane, linearly polarized beam propa-
gating in the Z direction with polarization vector along the X
axis. The Fresnel number N of this aperture as observed
from a point on the optical axis at Z = z, is given by®

At N = 1 (corresponding to zo = 25)) the intensity distribu-
tion is as shown in Fig. 3. Figure 3(a) shows the intensity for
the X component of polarization. The incident power on
the aperture has been set to unity, and the calculated power
for the distribution in Fig. 3(a) is 0.97; the peak intensity in
this figure is I e = 0.05A2. Figure 3b shows the intensity
for the Z component of polarization; the power in this com-
ponent is 0.01, and the peak intensity is 0.18 X 1073 A~2,
The Y component (not shown here) is an order of magnitude
below the Z component, and its computation is somewhat
complicated owing to the existence of truncation and round-
off errors that are of the same order of magnitude as the
signal itself. In any event, the polarization effects in this
example are small and can safely be ignored. In the absence
of the polarization factor ¥,, the two-dimensional Fourier _
transforms in Eq. (12) can be reduced to one-dimensional
Bessel transforms for circularly symmetric apertures. Fig-
ure 4 shows the radial distribution of intensity for the above
aperture at z9 = 12X (corresponding to N = 2) as computed
with two successive Bessel transforms. The intensity here is
normalized by the intensity at the aperture. Similar results
can be obtained for other values of R and 2, and all the well-
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Fig.3. Fresnel diffraction from a circular aperture of radius R = 5\

at a distance 2o = 25\. The X and Y axes are normalized by the
wavelength \, whereas the vertical axis has units of maximum inten-
sity, Imax- The incident beam is plane, propagating in the Z direc-
tion with unit incident power on the aperture. The incident polar-
ization is linear in the X direction. (a) Intensity distribution for the
X component of polarization, I, = 0.50 X 1071 (b) Intensity
distribution for the Z component of polarization, Ippas = 0.18 X 1072,

known patterns of Fresnel diffraction can be computed from
Eq. (12) by using two Fourier (or Bessel) transforms.

For values of N less than unity, computation of Eq. (12)
becomes slow owing to the large number of oscillations of the
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phase factor. Fortunately, this is the Fraunhofer regime,
where the steepest-descent approximation is applicable.
With reference to Egs. (11), consider a circular aperture of
radius R. The first dark ring in the Fraunhofer pattern of
this aperture is at the angular position (002 + 7,02)/2 = 0.61/
(R/N\), independent of z5. Ignoring the term N/4 in Eq. (13)
and approximating sine with tangent, we obtain for the radi-
us of the first ring in the observation plane

r=(x'2+y HY2 = 0.61 (R/N)/N.

Notice that the Fresnel pattern with N = 1 in Fig. 3(a) is
already close to the Fraunhofer pattern with a hint of the
first dark ring around ” = 0.61 X 5 = 3. The steepest-
descent approximation is usually acceptable for distances 2o
corresponding to N S 1.

5. DIFFRACTION IN THE PRESENCE OF A
LENS

A perfect (aberration-free) spherical lens converts an inci-
dent plane wave to a spherical wave converging toward the
focal point. Ideally, therefore, a lens is a phase object with
the following amplitude-transmission function:

t(x, y) = 7o(x, Wexpli2a/N[f — (2 + 2 + yH)V2)). (14)

7o(x, ¥) includes the aperture function, possible aberrations,
and the incident amplitude distribution. As before, the
incident beam will be assumed to be linearly polarized in the
X direction. If the polarization is not linear, its X and Y
components should be treated separately and the final re-
sults superimposed.

When the oscillations of the complex exponential term in
Eq. (14) are not prohibitive [i.e., when (f/A\)NAZ2 is relatively
small}, it is possible to treat Eq. (14) as an aperture function
and use the Fresnel or Fraunhofer propagation formulas of

‘the preceding sections. For example, in Farnell’s experi-
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Fig.4. Fresnel diffraction from a circular aperture of radius R = 5\
at a distance z5 = 12X\. The incident beam is plane with unit
intensity at the aperture. The polarization effects are ignored.
The intensity at the observation plane has circular symmetry; thus
only the radial distribution is shown. Notice that the central spot is
dark and the peak intensity is twice the intensity of the incident
beam at the aperture.
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ments in the microwave-frequency range (A = 3.22 cm), the
focal length and the numerical aperture were f = 20X and NA
= (.36, respectively.”® To compute the diffraction patterns
for this case we used Eq. (12) in conjunction with Eq. (14)
and set 7o(x, y) = 1 in the aperture; the necessary array size
was 256 X 256. We found that the maximum intensity on
the optical axis occurs not at the focal point but at zo = 18;,
in agreement with Farnell’s experimental findings. The
computations also revealed that the maximum intensity is
about 10% higher than the intensity at the focal point. As
another example, we compared our results with theoretical
results of Mahajan,® who calculated the axial intensity dis-
tribution for small numerical apertures. We used a 128 X
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Equation (18) is now used in the diffraction equation (12),

yielding

(', Ny, Azy)) = —if’ exp(i27z¢)F ¥ (0., 0,)Fih(u, v)}
X exp{—~i2wzy [1 — Yy(f/2y) 0,2 + 0,7)
-(1=-a2=a)") (19)

Equation (19) can be written in the following compact form:

t (', Ny, Nzg)) = —if exp(i2n2)F ! (¥, (0,, 0,)8(0,, 0},

(20a)

where

gloy, 0,) =

0,

exp{ir[(f’ —2) 0+ 0,2 — 22/ z @2:—'3)” (0,2 + ayz)”:l} Flh(u, v)}
“~ n!

- (20b)
a2+ ayz >1

/128 array for numerical computations corresponding to NA

= 0.85 X 10~ and f = 139 X 105 A and reconstructed the
curve in Fig. 7 of Mahajan’s paper.

For large values of (f/A)NAZ2, the rapid oscillations of the
lens-transmission function in Eq. (14) reduce the efficiency
of computations to the extent that time and memory re-
quirements make such computations impractical. Fortu-
nately, however, it is possible to factor out the fast-oscillat-
ing term and apply the Fourier transformations to the re-
maining function. To show this, we rewrite Eq. (14) as
follows:

t(fx, fy) = 7(fx, fy)exp[—irf (x* + y?)]. (15a)
Herex = x/f,y = y/f,f = f/A, and
7(fx, fy) = 7(fX, fy)expl—i2=f[(1 + x* + y*)1/2

—1-1,x2+ )l

= 74(fx, fy)exp{i%rf’Z (-1 Q’;:T'BE x>+ yz)"} .
n=2 *

(15b)

Since t(fx, fy) in Eq. (15a) is the product of two functions, its
Fourier transform can be written as a convolution, namely,

Fle(fx, fy)} = Fr(fx, f9)) * (=i/fexpli(x/f)(u® + v¥), (16)

where u and v are variables of the transform domain. Equa-
tion (16) can equivalently be written as

2T/, vif) = (~ilfYexplita/f)ud® + v?)]
x ] j +: hat, o expl=i(@n/f) et + vt d,
(17a)
where, by definition,

h(u, v) = expli(x/f)(u® + vA)]IFr(fx, fy)}.  (17b)

Using dimensionless quantities oy = u/f’ and oy, = v/f, Eq.
(17a) becomes

A"2T(0,/A, 0,/N) = —if explinf (0,2 + 0, )]Fhiu, v)).  (18)

The results can now be summarized as follows: To com-
pute the diffraction pattern at Z = z, follow these steps:

(1) Calculate 7(fx, fy) according to Eq. (15b).
{Note that 7o(fx, fy) = 0 when (x? + y2?)!/2 > tan[arc-
sin(NA)]}.

(2) Calculate h(u, v) from Eq. (17b).

(8) Calculate g(oy, oy) from Eq. (20b).

(4) Calculate t,(Ax", \y’, A2¢’) from Eq. (20a). (This step
should be performed separately for the three components of
polarization.)

We have thus shown that a sequence of three Fourier
transforms yields the diffraction pattern around the focal
plane of a lens. It is instructive to derive the standard
single-Fourier-transform lens formula from these results.
In the limit when NA < 4/A/f, the infinite sums in Eqgs. (15b)
and (20b) are close to zero and can be ignored. Thus 7(x, y)
= 7o(x, y) and (o5, o) = F {h(u, v)}at zo = f. If polarization
effects are ignored, Eq. (20a) would yield

tO\/, Ny, M) = —if exp(i2nf)F{Fh(u, v)}

= —i(f/Nexp(i2nf/Nexpli(rA/f)
X (' 2+ y D FHro(fx, M @D

Equation (21) is the well-known result of diffraction theory
that is usually obtained from the Fresnel-Kirchhoff integral
under standard approximations.*

5. RESULTS AND DISCUSSION

In this section we present results of numerical computations
for a lens with f = 4000\ and NA = 0.3. Figure 5(a) shows
the function 7(x, y) versus distance from the lens center
(only the real part of the function is shown); it has been
assumed that 79(x, y) = 1 within the aperture. The oscilla-
tions are due to the complex exponential function in Eq.
(15b). After two Fourier transformations and multiplica-
tions by various phase factors in the process, the function
&(ay, 0y) is obtained whose real and imaginary parts at zo = f
are plotted in Fig. 5(b) versus (o,2 + 0,2)1/2. Here, as in Fig.
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Fig.5. Diffraction from aberration-free, spherical lens with f = 4000\ and NA = 0.3. The incident beam is plane with unit amplitude, and the
polarization effects are ignored. (a) The real part of the complex function 7(x, y) versus the normalized distance from the lens center. (b) The
real and imaginary parts of the complex function g(o;, o) versus (s,2 + 0,2)2at zo = f. (¢} Amplitude and phase of the distribution at the focal
plane. The amplitude is normalized by the aperture area of the lens. (d) Amplitude and phase of the distribution at the focal plane obtained

with standard approximations.

5(a), the horizontal axis can be interpreted as the normalized
distance from the lens center. Finally, a third Fourier trans-
form as described by Eq. (20a) yields the distribution at the
focal plane. We have ignored the polarization effects at this
stage by setting ¥, = 1 and computed t(Ax’, \y’, Af’), which is
then plotted versus radial distance from the focal point as
shown in Fig. 5(c). Both amplitude and phase of the distri-
bution are shown here, and the amplitude is normalized by
the aperture area of the lens. To compare this result with
the standard approximate distribution, otherwise known as
the Airy pattern, we have plotted the corresponding func-
tion, as described by Eq. (21), in Fig. 5(d). Notice that the

peak amplitude in Fig. 5(c) is slightly less than that of Fig.
5(d) and that the zeros of the exact distribution are slightly
shifted to the right of the corresponding zeros of the Airy
pattern. These differences are expected to be more pro-
nounced at larger numerical apertures.

The effects of polarization are shown in the two-dimen-
sional plots of intensity at the focal plane in Fig. 6; a plane
incident beam has been assumed with unit power in the
aperture and linear polarization in the X direction. Figure
6(a) corresponds to the X component of polarization in the
focal plane; the total power in this component is 0.976, and
the peak intensity is 0.276A"2. Figure 6(b) shows the inten-
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sity distribution for the Y component of polarization with a
total power of 0.92 X 10~4 and a peak intensity of 0.74 X 105
A2, Figure 6(c) corresponds to the Z component of polar-
ization with a total power of 0.023 and a peak intensity of
0.335 X 10~2 A~2, Notice that the Y component has four
peaks located in the four quadrants of the XY plane, while
the Z component has only two peaks, which are separated in
the direction of the incident polarization.

M. Mansuripur

Fig. 6. Diffraction from aberration-free, spherical lens with f =
4000\ and NA = 0.3. The incident beam is plane, is linearly polar-
ized in the X direction, and has unit power in the aperture. (a)
Intensity distribution for the X component of polarization at the
focal plane. Iax = 0.276\~2. (b) Intensity distribution for the Y
component of polarization in the focal plane. Ip, = 0.740 X 105
A2, (c) Intensity distribution for the Z component of polarization
in the focal plane. Ij,, = 0.335 X 1072 \~2

Finally, the intensity distribution at zy = f + 15\ is shown
in Fig. 7. (Only the X component of polarization is shown.)
The total power in this component is again 0.976, but the
peak intensity is only 0.04A~2. The same distribution was
found for zo = f — 15A\. Note that the depth of focus (\/NA?)
for the lens studied here is about 10A.

For the computations leading to Figs. 6 and 7 we used a
512 X512 array and a standard two-dimensional fast-Fouri-
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Fig. 7. Intensity distribution for the X component of polarization
at zo = f £ 15\ (same lens as Fig. 6). Ipax = 0.4 X 1071 A2,
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er-transform algorithm; on a VAX11/780 computer, the en-
tire process took less than 10 min. For larger numerical
apertures and/or focal lengths the array size increases {the
linear dimensions of the array are proportional to the focal
length and to the fourth power of tan[arcsin(NA)]}, but the
computational requirements remain within the reach of
present-day computers.
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