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Beam Quality Factor of Higher Order Modes
in a Step-Index Fiber
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Abstract—The beam quality factor (or M 2-parameter) for lin-
early polarized (LP)-modes of a step-index fiber is calculated in a
closed form, as a function of the fiber V -number. It is shown that
M 2 sharply peaks for all fiber modes when they are close to cutoff.
Particularly simple expressions are derived in the limit V → ∞.
Two practically important coherent superpositions of modes are
considered for which the degree of degradation of the beam quality
due to the higher order mode content is calculated. The reported
results can be useful for designing large-core high-power fiber
lasers, amplifiers, and fiber-based beam delivery systems, when
preservation of the spatial beam quality is important.

Index Terms—Beam quality factor, fiber modes, multimode
fiber.

I. INTRODUCTION

THE BEAM quality factor (orM2-parameter) of an optical
beam is defined as the ratio of divergence of the beam to

that of an imaginary fundamental Gaussian beam such that the
two beams have the same second-order intensity moment at the
waist [1]. Since the fundamental Gaussian beam has the least
divergence, M2 > 1 for real beams. In modern laser research
and development, the M2-parameter has become a universal
standard of the laser beam quality and the measured value of
M2 is nearly always specified whenever a new laser system is
reported. A high-power fiber laser is not an exception. The field
profile in a robustly guiding single-mode fiber can be closely
approximated by a Gaussian, and therefore, the beam quality
factor for a fiber laser based on a single-mode active fiber is
typically very close to one [2].

As the output power of fiber lasers grows into the kilowatt
range [3], [4], the detrimental effects of nonlinear processes
in the fiber such as stimulated Brillouin scattering (SBS) and
stimulated Raman scattering (SRS) become the major factors
that limit a further power upscaling. It is therefore desirable to
increase the size of the active fiber core while maintaining a
high beam quality of the laser output. The same applies to the
high-power fiber-based beam delivery systems. Increasing the
core size of a fiber eventually will allow the fiber to support
several spatial modes. Various methods have been devised in
order to achieve high spatial beam quality even with the large-
core multimode step-index fiber-based laser systems [4]–[7].
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Fig. 1. Choice of the rectangular and polar coordinate systems. The scanning
slit of the beam analyzer is shown with the black vertical stripe in the x−y
plane.

However, if the fiber is not single mode, the higher order mode
content will be inevitably present in the output laser beam
which will degrade the beam quality to some extent.

In this paper, we report a calculation of the beam quality fac-
tor for a multimode step-index fiber. In particular, the analytical
result for the fundamental fiber mode that has been reported
previously [8] is extended to the higher order modes. It is shown
that the M2-parameter of the pure linearly polarized (LP)-
modes sharply peaks when the modes are near cutoff. Similar
peaking is expected in the case of a general beam emerging
from a multimode fiber when one of the modal components of
the beam is close to its cutoff. Particularly simple analytical
formulas for theM2-parameter for the fiber modes are found in
the limit V → ∞. Further, two practically important coherent
superpositions of modes are considered, and the quantitative
degree of degradation of the beam quality is found as a function
of the higher order mode content of the beam. The results
reported here will be helpful in designing practical fiber laser
systems when a specific value of M2 is targeted.

II. BASIC FORMULAS

Consider a lightwave exiting from a cleaved facet of a step-
index optical fiber. The cleave is supposed to be perfect, i.e., the
plane of the facet is orthogonal to the geometrical axis of the
fiber. A rectangular coordinate system is chosen, as shown in
Fig. 1. The coordinate z-axis is parallel to the geometrical axis
of the fiber, and the origin of the coordinate system is located at
the center of the circular fiber core. We further assume that the
optical signal exiting the fiber is a monochromatic lightwave
with angular frequency ω, and it is passed through a linear
polarizer which is placed right after the fiber end facet. Thus,
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the field diverging in free space can be described in terms of a
scalar, normalized electric field amplitude

E(x, y, z, t) = E(x, y, z) · eiωt

where

∫ ∫
dx dy |E(x, y, z)|2 = 1. (1)

Suppose that the intensity distribution of the beam in free space
is analyzed using a scanning-slit device, with the slit parallel to
the y-axis. Accordingly, define the z-dependent center coordi-
nate 〈x〉(z) and variance σ2

x(z) of the beam as follows:

〈x〉(z) =
∫ ∫

dx dy x |E(x, y, z)|2

σ2
x(z) =

∫ ∫
dx dy (x− 〈x〉(z))2 |E(x, y, z)|2 . (2)

Assuming the paraxial beam propagation and using the
Kirchhoff–Fresnel diffraction formula, we find

〈x〉(z) = 〈x〉(z0) − i λ4π · (z − z0)

·
∫ ∫

dx dy

[
E(x, y, z0) · ∂E

∗

∂x
(x, y, z0) − c.c.

]

σ2
x(z) =σ2

x(z0) − i
λ

2π
·A · (z − z0)

+
λ2

(2π)2
·B · (z − z0)2 (3)

where λ is the wavelength of light in free space, and the
parameters A and B are defined as follows:

A =
∫ ∫

dx dy (x− 〈x〉(z0))

×
[
E(x, y, z0) · ∂E

∗

∂x
(x, y, z0) − c.c.

]

B =
∫ ∫

dx dy

∣∣∣∣∂E∂x (x, y, z0)
∣∣∣∣
2

+
1
4

×
{∫ ∫

dx dy

[
E(x, y, z0) · ∂E

∗

∂x
(x, y, z0) − c.c.

]}2

.

(4)

The equations in (3) express the z-dependent center coordinate
and variance of the beam in terms of the amplitude distribution
at the fiber facet (at z0). They are three-dimensional generaliza-
tions of the results obtained in [9] for two-dimensional beams
(without y-dependence). Note that z0 is the coordinate of the
output facet of the fiber which does not necessarily coincide
with the position of the beam waist.

Following Siegman [9], we introduce the position of the
beam waist z̃0x and the beam-quality factor M2

x such that the
formulas (3) can be rewritten in the Gaussian-beam-like form

σ2
x(z) = σ2

x(z̃0x) +M4
x · λ2

16π2σ2
x(z̃0x)

· (z − z̃0x). (5)

By comparing (5) and (3), we find the following formulas
for the position of the beam waist, the second-order intensity
moment at the waist, and the beam-quality factor:

z̃0x = z0 + i
π

λ

A

B
(6)

σ2
x(z̃0x) =σ2

x(z0) +
A2

4B
(7)

M2
x =

√
4Bσ2

x(z0) +A2. (8)

All three parameters of the beam (6)–(8) are expressed in terms
of the field distribution at the fiber exit facet.

Expression (8) for the beam quality factor will be used in the
rest of this paper with specific field distributions at the fiber end
facet. Note that for fields that are real at z0, both A and the
last term in expression for B in (4) vanish which simplifies the
calculation of the M2

x -parameter.

III. BEAM-QUALITY FACTOR FOR THE PURE LP-MODES

OF A STEP-INDEX FIBER

An optical field propagating in a weakly guiding step-index
fiber can be locally expressed in terms of the so-called LP fiber
modes (or LP-modes). Strictly speaking, all LP-modes except
for the fundamental mode LP01, are not the true eigenmodes
of a step-index fiber. Instead, they are linear superpositions of
the true eigenmodes TE, TM, EH and HE, which do not have
a uniform polarization across the fiber [10]. In practical weakly
guiding fibers, the true eigenmode components of a particular
LP-mode are nearly degenerate, and the beatlength between
the components is typically of the order of a few centimeters.
The reason for using the LP-mode basis instead of the basis
of the true eigenmodes is that the spatial field distribution of
the LP-modes is described by considerably simpler expressions
than that of the true modes. In addition, if a particular LPnm-
mode is launched into an ideal, perturbation-free fiber, it will
evolve so that the field exiting from the fiber will still be in the
form of the LPnm-mode, with the same indexes n andm as that
of the input mode, but rotated around the fiber axis and with
different (but still uniform across the fiber) polarization. In this
section, we will derive expressions for the beam-quality factor
of pure LP-modes exiting from a step-index fiber.

Accordingly, consider a step-index fiber with the core radius
a and core refractive index ncore. The cladding is assumed to
be infinitely large with the refractive index nclad. The refractive
index step between the core and the cladding, (ncore − nclad)
is assumed to be small, so that the fiber can be considered
as weakly guiding. Then, in the LP-approximation, the field
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distribution across the fiber end facet for a particular LPnm-
mode of the fiber can be written as [10]

Enm(r, φ, ξ) = Enm(r) · cos [n(φ+ ξ)] (9)

where (r, φ) are the polar coordinates, and parameter ξ deter-
mines the orientation of the field pattern of a particular mode
with respect to the scanning slit of the beam analyzer. The radial
dependence of the approximately transverse field amplitude
in (9) is given by

Enm(r) ∝Jn
(um
a
r
)

(0 ≤ r < a)

∝Kn

(wm
a
r
)

(r ≥ a) (10)

where Jn and Kn are the nth-order Bessel function of the
first kind and the modified Bessel function of the first kind,
respectively, and the pair (um, wm) is an mth solution of the
following system of equations

Jn(u)
uJn+1(u)

=
Kn(w)

wKn+1(w)

u2 + w2 =V 2 (11)

where V is the so-called V -parameter of the fiber defined as
follows:

V =
2πa
λ

√
n2

core − n2
clad. (12)

Since the field distribution of LP-modes is real, the location
of the beam waist for individual modes coincides with that of
the exit fiber facet, as follows from (6). Further, both second-
order intensity moment at the fiber end facet (7) and the beam
quality factor (8) for the LP-modes can be calculated in a closed
form. By using the field amplitudes from (9) and (10) in the
general formula (8), and by applying known relations between
Bessel functions and their integrals [11], for the beam-quality
factor of the individual LP-modes, we find

(
M2
x

)2

nm
= −2Cn · σ

2
x(z0)
a2

· w2
mJ

2
n

Jn−1Jn+1
(13)

where um and wm are solutions of (11) for a particular LPnm
mode. The second-order intensity moment at the fiber end facet
in the above formula is explicitly given by

(
σ2
x(z0)
a2

)
nm

=Cn ·
{
− Jn

3umJn−1

[
1 +

n(n− 1)
um

Jn
Jn+1

]

+
1
6

[
1 − 2(n2 − 1)

(
1
w2
m

− 1
u2
m

)]}
.

(14)

In the above formulas, we used, for brevity

Ji ≡ Ji(um). (15)

Fig. 2. Dependence of the beam-quality factor on the value of the fiber
V -number, for several lowest order LPnm-modes. (a) LPnm-modes with
n �= 1. (b) LP1m-modes. 1m(1) stands for the LP1m-mode with ∝
sin(φ)-dependence, and 1m(2) stands for the LP1m-mode with ∝ cos(φ)-
dependence.

In addition, the dimensionless parameter Ci is defined as
follows:

Cn =1, for LPnm-modes with n �= 1

Cn =1 +
1
2

cos(2ξ), for LP1m-modes (16)

where ξ is the orientation parameter for a particular LP-mode
in (9). The validity of (13)– (16) has been verified by confirming
that the results obtained by using these formulas are identical
to those of a direct numerical integration using the general
formulas (4) and (8), for several randomly picked LP-modes.
Note that the value of the beam-quality factor depends on
the mode orientation with respect to the scanning slit of the
beam analyzer (i.e., on the parameter ξ), only for the LP1m-
modes, and is independent of ξ for all modes with n �= 1.
Further, by using n = 0 and J−1(x) = −J1(x) in the above
general expressions, we recover the result reported in [8] for
the fundamental mode LP01.

The M2
x for several lowest order LP-modes as a function of

the fiber V -number is shown in Fig. 2. In particular, Fig. 2(a)
shows the combined data for the LPnm-modes with n �= 1, and
the data for several LP1m-modes is shown in Fig. 2(b). In the
latter figure, the two extreme cases for each LP1m-mode are
shown which correspond to the two orientations of the lobes
of the field distribution: parallel to the scanning slit of the
beam analyzer (ξ = π/2) and perpendicular to the slit (ξ = 0).
Note that the mode LP11 ∝ sin(φ) far from the mode cutoff
has a slightly lower value of the M2

x -parameter than that of
the fundamental fiber mode LP01. Of course, this does not
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imply that the higher order mode LP11 ∝ sin(φ) has a “higher”
beam quality than the fundamental mode. Instead, this means
that the beam analyzer with a single scanning slit and the
corresponding definitions (2)–(8) are not universally adequate
for quantifying the beam quality of an arbitrary beam, and the
two-dimensional beam analysis is in general, necessary (e.g.,
with two orthogonal scanning slits).

Further, as seen from the Fig. 2, the beam-quality factor for
all modes sharply peaks near the corresponding cutoff values of
the V -number. It is known that the fraction of the mode energy
that is propagating in the cladding of the fiber has a similar
property of sharply peaking near the mode cutoff [12]. Since
in practice the fiber cladding has a finite size, the modes that
are too close to cutoff will be severely attenuated. Therefore,
the peaking of the beam quality factor near mode cutoffs in
real fibers will be somewhat less pronounced than that shown
in Fig. 2.

As the V -number increases, the M2
x -parameter for the

LP-modes approaches constant values. Using known properties
of Bessel functions, these limiting values can be found in a
closed form as follows:

lim
V→∞

(
M2
x

)
nm

= Cn

√√√√
(
V

(n+1),m
cutoff

)2

+ 2(n2 − 1)

3
(17)

where V (n+1),m
cutoff is the cutoff value of V -number for the next

higher order mode LP(n+1),m. The ratios of the second-order
intensity moments at the fiber end facet to the fiber core radius
squared for the LP-modes also approach constant values that
can be found in the following form:

lim
V→∞

(
σ2
x(z0)
a2

)
nm

=
2Cn
3


1 +

2(n2 − 1)(
V

(n+1),m
cutoff

)2


 . (18)

Table I summarizes the numerical limiting values of the beam-
quality factor for the lowest order LP-modes, together with the
cutoff values of the V -number.

IV. MIXED-MODE CASES

In the remainder of the paper, we will consider two practi-
cally important examples of beams that are coherent superposi-
tions of particular LP-modes. Such coherent superpositions can
result from, for example, injecting a narrowband laser light into
a multimode step-index fiber of moderate length.

A. Mixture of LP01 and LP11

This case is practically important because out of all guided
fiber modes, LP11 has the closest propagation constant to that
of the fundamental mode LP01. Thus, if the pure LP01-mode
is launched into a slightly multimode fiber and the fiber is
subjected to a disturbance, some of the intensity will be
predominantly transferred to the LP11 modes as the light

TABLE I
SUMMARY OF THE CUTOFF VALUES OF THE V -NUMBER AND THE

LIMITING VALUES OF THE BEAM-QUALITY FACTOR FOR

SEVERAL LOWEST ORDER LP-MODES

propagates down the fiber [13]. Accordingly, consider a
normalized field distribution at the exit fiber facet in the form

E(r, φ) =
√

1 − α · E01(r) +
√
α · eiψE11(r, φ, ξ) (19)

where the notation is the same as in (9), and 0 < α < 1 is a frac-
tion of the total intensity carried by the LP11-mode. As before,
we assume that the light is linearly polarized and consider two
extreme cases of the excited mode orientation with respect to
the scanning slit of the beam analyzer: ξ = π/2 and ξ = 0. By
using the general formula (8) for the beam-quality factor with
the above field distribution (19), we find that in the case of ξ =
π/2, the value of M2

x -parameter is independent of ψ, which is
the phase shift between the two modes at the fiber end facet. The
calculated beam-quality factor in this case is shown in Fig. 3(a),
as a function of a fraction of the total intensity of the beam car-
ried by the excited mode. For concreteness, in the calculation,
we assumed that the step-index fiber has the V -number equal
to 7. (Such as a fiber with NA = 0.1 and the core diameter of
22 µm at a wavelength of 1 µm, for example.) From Fig. 3(a),
the value of the M2

x -parameter is very close to 1 over the entire
range of α. As in the case of pure LP11-mode, this does not
mean that the beam necessarily has a high quality but that
analyzing the beam with a single scanning slit is not adequate
in this case, and the analysis in two dimensions is necessary.

In the case of the orthogonal orientation of the LP11-mode
(ξ = 0), the beam-quality factor of the beam depends on
the phase ψ between the two modes at the fiber end facet.
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Fig. 3. Beam quality factor of the coherent superposition (19) of LP01

and LP11 modes, as a function of the higher order mode content. The
step-index fiber has V -number equal to 7. (a) Case when the lobes of the
LP11-mode are parallel to the scanning slit of the beam analyzer (ξ = π/2).
TheM2

x -parameter of the beam in this case is independent of ψ, the phase shift
between the modes at the fiber end facet. (b) The lobes of the LP11-mode are
orthogonal to the scanning slit (ξ = 0). Different curves correspond to different
values of the phase shift between the modes.

The corresponding curves at several different values of ψ are
shown in Fig. 3(b). The multimode step-index fiber is again
assumed to have the V -number equal to 7. From the figure,
the most severe degradation of the M2

x -parameter due to the
mode-mixing occurs when the phase between the two spatial
modes at the fiber end facet equals to π/2. For example, in
this case 20% of the total intensity carried by the excited mode
LP11 degrades the beam quality factor from ∼ 1.05 for the pure
fundamental mode, to ∼ 1.5.

The dependence of the beam quality factor on the excited
mode content of the beam is represented by smooth curves
that naturally start at the M2

x value for the fundamental mode
at α = 0 and end at the value for the LP11-mode at α = 1. In
the case when the V -number approaches the value of 2.405
from above (2.405 is of course the cutoff value for the LP11-
mode), the degradation of the beam quality due to the mode
mixing becomes severe. In Fig. 4, we plot the M2

x -parameter
as a function of the excited mode content in a fiber with
V -number equal to 2.42 so that the LP11 mode is allowed to
propagate in the fiber, but it is close to cutoff. As before, the
M2
x depends on the spatial orientation of the excited mode with

respect to the scanning slit of the beam analyzer. However, the
dependence on ψ, the phase shift between the two modes in
this case becomes negligible. Note that in practice, the modes
that are too close to cutoff experience severe attenuation in the
fiber because a large fraction of the mode energy propagates
in the fiber cladding. Therefore, the degradation of the beam
quality due to the excited modes that are close to cutoff will
be less pronounced in real fibers, and the actual value of the
M2
x -parameter in such cases will depend on how far the excited

modes can propagate in the fiber.

Fig. 4. Beam quality factor of the coherent superposition (19) of LP01 and
LP11 modes, as a function of the higher order mode content, when the LP11

mode is close to cutoff (V -number equals to 2.42). The two curves correspond
to two different orientations of the excited mode with respect to the scanning
slit of the beam analyzer. (a) ξ = π/2 and (b) ξ = 0. Note that when LP11-
mode is close to cutoff, the M2

x -parameter becomes independent of ψ, which
is the phase shift between the modes, for both orientations of the excited mode.

Fig. 5. Beam quality factor of the coherent superposition (20) of LP01 and
LP02 modes, as a function of the higher order mode content. The step-index
fiber has V -number equal to 7. Different curves correspond to different values
of ψ, which is the phase shift between the modes at the fiber end facet.

B. Mixture of LP01 and LP02

As a second practically important mixed-mode case consider
a coherent superposition of adjacent axially symmetric modes
LP01 and LP02

E(r) =
√

1 − α · E01(r) +
√
α · eiψE02(r). (20)

The notation above is the same as in the previous example (19).
Dependence on φ in this case is absent because both modes
are axially symmetric. The output field in the form (20) can
approximate a situation when the pure fundamental mode is
launched into a multimode step-index fiber, and the fiber is
subjected to an axially symmetric disturbance such as tapering
or splicing to a fiber with a different core size or numerical
aperture [14]. As before, the field is assumed to be linearly
polarized. The calculated beam-quality factor as a function of
the fraction of energy carried by the excited mode is shown
in Fig. 5. Different curves in the figure correspond to several
fixed values of ψ, the phase shift between the two modes at the
exit facet of the fiber. In the calculation, we assumed that the
V -number of the fiber equals 7. From the figure, the case of
the most severe degradation of the beam-quality factor due to
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Fig. 6. Beam quality factor of the coherent superposition (20) of LP01 and
LP02 modes, as a function of the higher order mode content, when LP02 mode
is close to cutoff (V -number equals to 3.94). Different curves correspond to
different values of ψ, which is the phase shift between the modes at the fiber
end facet. Note that the most severe degradation of the beam quality factor in
this case occurs when ψ = 0, and not ψ = π/2, as is in the case when the
excited mode is far from cutoff.

the excited-mode content of the beam occurs when the two
modes are out-of-phase (ψ = π). In this case, 20% of inten-
sity carried by the excited mode degrades the M2

x -parameter
to ∼ 1.7.

Further, consider the degradation of the beam quality due to
the mode mixing when the excited mode is close to cutoff. In
Fig. 6, we plot the M2

x -parameter as a function of the excited
mode content of the beam for a fiber with V -number equal
to 3.94, which is slightly above the cutoff value for the LP02

mode. The degradation of the beam quality becomes severe, as
expected. Note that the worst case now results when the two
modes at the exit fiber facet are in phase.

V. CONCLUSION

The beam-quality factor (M2) for the modes of a step-index
fiber has been found in a closed form as a function of the fiber
parameters. It has been shown that this quantity sharply peaks
close to the mode cutoffs. Similar peaking is expected when a
superposition of modes is exiting from the fiber, with one of
the modes being close to its cutoff. Further, simple formulas for
the beam quality factor have been found in the limiting case
of a fiber with a large V -number. Two practically important
coherent superpositions of modes in a multimode fiber have
been considered, and the quantitative degree of degradation of
the beam quality due to the higher order mode content of the
beam in these cases have been found.
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