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Bloch mode analysis of transmission through periodic 
slit arrays in finite thickness metallic slabs 
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College of Optical Sciences, The University of Arizona, Tucson, Arizona 85721 

masud@optics.arizona.edu 
 
Abstract. The Bloch modes of a periodic slit array in a metallic slab are identified, then used to 
investigate the transmission of light through sub-wavelength slits residing in a finite-thickness slab. 
Specifically, the Bloch mode method is used here to study Fabry-Perot-like resonances within 
individual slits, in conjunction with the onset of surface plasmon polariton (SPP) resonances and in 
the vicinity of the Wood anomalies. Although the results largely agree with our earlier numerical 
simulations obtained with the Finite-Difference-Time-Domain (FDTD) method, there are 
indications that the FDTD method has difficulty with convergence at and around resonances; the 
points of agreement and disagreement between the two methods are discussed in the present paper. 
When the period p of the slit array is comparable to (or somewhat below) the incident wavelength 
λo, the Bloch mode method requires only the 10-20 lowest-order modes of the slit array to achieve 
stable solutions; we find the Bloch mode method to be an effective tool for studying dielectric-filled 
apertures in highly conductive hosts. 

Keywords: surface plasmons; polaritons; optics of metals; guided waves; apertures; diffraction theory. 

1. Introduction. This paper is a follow-up to our previously published papers [1-4]. The earlier 
publications addressed the problem of transmission through slits and slit arrays using Finite 
Difference Time Domain (FDTD) computer simulations as well as an analytic approach based on 
the expansion of fields into Bloch modes. The goal of the present paper is to extend the Bloch mode 
method to cover the case of finite-thickness metallic hosts. We also demonstrate that the Bloch 
mode method can reproduce, rapidly and efficiently, the main features of the FDTD simulations 
reported in [2] without suffering from the latter’s numerical dispersion problems that are most 
pronounced at and around the various resonances. 

The history of grating problems and their resolution dates back to R. W. Wood’s famous 1902 
paper on the Wood anomalies [5]. Numerous tools have been developed to solve these and related 
problems; however, there is no single tool that can be generally applied to all cases of interest. Our 
Bloch mode technique [3, 4] appears to be effective for periodic slit arrays in metallic hosts. 
Chandezon invented the C-method in 1980 [5], where a new coordinate system for mapping the 
grating surface onto a plane was introduced; this method works well for surface relief gratings. The 
coordinate transformation requires derivative continuity along the interface, which is not applicable 
to our slit arrays at their sharp corners. Moharam and Gaylord developed the Rigorous Coupled 
Wave Analysis (RCWA) method [7], whose convergence under TM illumination was subsequently 
improved by Lalanne and Morris [8]. RCWA expands the permittivity function of the periodic 
structure, ε (ω), in a Fourier series. The corresponding eigen-functions, however, do not represent 
the structure’s natural modes, as they are only indirectly related to the sharp material discontinuities 
at the slit walls. Although the RCWA method is readily applicable to problems associated with the 
periodic slit arrays, in our studies we have avoided this technique primarily because of our interest 
in the behavior of the natural modes of the structure.  

In a homogeneous environment the eigenfunctions of the wave equation, occasionally referred 
to as the Rayleigh waves, are a set of plane-waves including both propagating and evanescent 
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waves. The Rayleigh waves [9] were introduced in 1907 to address the anomalous diffraction from 
metallic gratings that had been reported by Wood a few years earlier. More recently, the eigen-
functions of the slit have been identified and used to analyze the behavior of periodic slit-arrays at 
optical wavelengths [10]. The difficulty with the modal approach is its rather poor convergence 
[10], when one attempts to match the boundary conditions using the Rayleigh waves outside, and 
the slits’ Bloch modes inside a high-conductivity material. In our earlier papers we developed an 
algorithm to obtain the modal coefficients through minimization of the field discontinuities at the 
interfaces [3, 4]. With this method, we have now successfully obtained the modal amplitudes of all 
the excited waves (including surface waves) at the metal-dielectric interfaces associated with 
periodic slit arrays. 

Our investigations of sub-wavelength slits in metallic hosts have relied on two methods of 
computation: (i) FDTD simulations, and (ii) Bloch mode expansion of the fields. The FDTD 
method employing the perfectly matched boundary layer has been discussed thoroughly and used 
extensively in the past [11, 12]. We find it instructive to use the Bloch mode approach as a check on 
the validity of the FDTD results. 

This paper begins by describing the equations used in calculating the modal amplitudes. We 
proceed to calculate the transmittance of the array for different periods and thicknesses. A 
comparison of our Bloch mode analysis results with the earlier FDTD simulations [2] in section 3 
reveals that the two methods are in agreement under fairly general circumstances. Where the two 
methods disagree, however, we notice that FDTD suffers from convergence problems associated 
with numerical dispersion. 
 
2. The Bloch mode method. Figure 1 shows a TM-polarized plane-wave at oblique incidence 
(black arrows) illuminating the top facet of a slit array in a metallic host. The incident beam initially 
excites two sets of modes: the reflected modes (red arrows), which are the conventional Rayleigh 
waves, i.e., propagating as well as evanescent plane-waves specified in terms of their field 
components (Hn

xR, En
yR, En

zR), and downward-propagating Bloch modes within the slab (Hn
xD, 

En
yD, En

zD), indicated in the figure with blue arrows. When the downward-propagating Bloch modes 
reach the bottom facet, they create two additional sets of modes: the transmitted modes (Hn

xT, 
En

yT, En
zT), brown arrows, and upward-propagating Bloch modes of the slit array (Hn

xU, En
yU, En

zU), 
green arrows. Within the slits, the upward and downward modes eventually stabilize after many 
back-and-forth reflections, creating a Fabry-Perot type of resonant cavity within the individual slits. 
As may be expected from symmetry, for a given mode-index, the upward and downward modes of 
the slab should have identical E- and H-field profiles (aside from a −1 factor multiplying, say, the 
E-field, relating to the fact that the same-index modes propagate in opposite directions.) The Bloch 
modes of the array may be found by matching the boundary conditions on the (vertical) slit walls, 
then solving the resulting characteristic equation for the propagation constant. Subsequently, the 
(complex) mode amplitudes may be obtained by minimizing the discontinuity of the tangential field 
components at the top and bottom facets of the slit array. Details of this technique, referred to as the 
Bloch mode method of solving Maxwell’s equations for the slit array, have been described in our 
previous papers [3, 4]. 
 
2.1. Slit array equations for a finite thickness metallic slab. In general, an infinite number of modes 
are needed, both inside and outside the slit array, to account for the material discontinuities and to 
resolve the strongly localized fields at the sharp slit boundaries. In particular, the tangential E- and 
H-fields must match at the top and bottom interfaces, as follows: 
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Here C
n
R and C

n
T  are the mode amplitudes of the reflected and transmitted Rayleigh waves above 

and below the slab, while C
n
U and C

n
D  are the amplitudes of the upward- and downward-propagating 

Bloch modes within the slab. αn is the loss coefficient (including the phase factor) associated with 
traveling through the thickness τ  of the slab. For practical reasons, of course, one must truncate the 
above series and include only a finite number N of each type of mode. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. A TM-polarized plane-wave (Hx, Ey, Ez) arriving at an oblique angle θ illuminates an array of slits in a metallic 
slab of thickness τ. The incident wavelength is λo, the slit width is w, and the array periodicity is p. The incidence 
medium (gray region above the slab), the transmission medium (light blue, below the slab), the metallic host (slanted 
shading), and the dielectric filling of the slits (dotted gray) are all homogeneous and isotropic, each having its own 
dielectric constant ε. The incident beam initiates four sets of modes (Rayleigh waves and Bloch modes) in three regions 
of space: In the incidence medium, it creates the reflected modes (red arrows); inside the slab (containing the metallic 
host as well as the dielectric-filled slits), the excitation gives rise to downward- as well as upward-propagating modes 
(blue and green arrows); the transmitted modes (brown arrows) reside in the light blue region below the slab. 
 

Because the modes of a metallic slit array are not mutually orthogonal, we compute the modal 
amplitudes Cn through simultaneous minimization of the tangential E- and H-field discontinuities at 
the top and bottom interfaces [3]. In the error functions f1 through f4 listed below, the magnetic field 
components are weighted by the free-space impedance, Zo ≈ 377Ω, because the H-fields are 
typically weaker than the corresponding E-field components. 
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The total discontinuity may be expressed as f  = f1 + f2 + f3 + f4, and an error function may be 

defined as Error = ∫ f dy, where integration is over one full period p of the slit array. The partial 
derivatives of the error function with respect to the real and imaginary parts of each Cj (i.e., 
individual mode amplitudes) must be set to zero. This can be shown to be equivalent to treating Cj 
and its conjugate, Cj

*, as two separate, independent variables, then setting the partial derivatives of 
the error function with respect to Cj

* equal to zero, that is, 
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Here 1 1 1 1{ } { , , ,  , , ,  , , ,  , , }n n n n
j R R D D U U T TC C C C C C C C C= L L L L  represents the set of all  modal amplitudes. 

We obtain the following 4N linear equations in 4N unknowns (the unknowns being the complex 
modal amplitudes Cj): 
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The above set of linear equations in the 4N unknown mode amplitudes {Cj} can be readily solved 
by inverting the 4N × 4N coefficients matrix. 
 
2.2 Simplified equations in the case of a thick slab. When the slit-width w is below one half of one 
wavelength, one and only one TM-polarized Bloch mode propagates through the depth of the slit; 
all the other modes decay rapidly and, assuming the slab thickness τ is greater than the skin-depth 
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of the metallic medium, none of these other modes retains a significant amplitude at the opposite 
facet of the slab. Thus, if the slab is thick enough to be opaque, one can generally ignore the 
contribution of all but one of the Bloch modes (i.e., the long-range guided mode) at the facet of the 
slab opposite the point of origination of the mode. Under such circumstances, one does not need to 
solve the entire set of 4N linear equations (4); rather, the three sets of linear equations listed below 
as Eqs. (5), each having 2N unknowns, should suffice. The first two of these equations, (5a, 5b), 
represent incidence from the top on a semi-infinite slab; see Ref. [3]; Eqs. (5c, 5d) correspond to the 
case of a downward-propagating guided mode arriving at the bottom facet; Eqs. (5e, 5f) represent 
the case of an upward-propagating guided mode arriving (from below) at the top interface. 
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In the steady-state, we assume that the first Bloch mode of the slit array, which is the only 

guided mode that propagates downward, has amplitude a at the top interface. Similarly, the upward 
propagating guided mode has amplitude b at the bottom interface. We also define ρ as the 
attenuation factor (including phase) of the guided mode when it travels through the thickness τ of 
the slab. According to Eqs. (5c, 5d), the amplitude b is obtained by reflection of the downward-
propagating guided mode at the bottom facet; therefore, b = aρ C1

U. The amplitude a consists of two 
parts: one part, according to Eqs. (5a, 5b), is created by the incident beam, that is, C1

D; the other, 
resulting from the reflection of the upward-propagating guided mode at the top facet is given, in 
accordance with Eqs. (5e, 5f), by bρ C΄1D. Consequently, 
 

1 1 1' (6)D U Da C a C Cρ ρ= +  
 

The amplitudes of the two guided modes at the top and bottom facets will thus be 
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Having determined the guided mode amplitudes at the top and bottom interfaces, one can now 
compute the other mode amplitudes using Eqs. (5a-5f). 
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3. Comparison of FDTD simulations with results obtained by the Bloch mode method. In a 
previous paper [2] we used FDTD simulations to study the transmission of light through periodic 
slit arrays as function of the slab thickness τ and array periodicity p. With the results of the Bloch 
mode method at hand, we are now in a position to compare the two methods. Since FDTD 
integrates Maxwell’s equations in time, it has an intrinsic error due to numerical dispersion. Our 
intent here is not to investigate such errors in any detail; rather we point out the consequences of 
this type of error in the vicinity of strong resonances, and show the superiority of the Bloch mode 
method under resonance conditions. We mention in passing that the newly discovered FDTD errors 
do not change the general conclusions reached in our previous publication, Ref. [2], although they 
do modify the numerical values of the transmission efficiency η in the vicinity of SPP and Fabry–
Perot resonances as well as those near the Wood anomalies. 

The setup for the simulations is the same as that used in Ref. [2], namely, a periodic slit array 
with variable period p, fixed slit-width w = 0.1µm, in a silver slab (thickness = τ , εm = 

−48.8 + 3.16i  at λo = 1.0 µm), illuminated at normal incidence by a TM-polarized plane-wave (i.e., 
H-field parallel to the slit’s long axis). The normalized transmittance η is defined as the ratio of the 
transmitted optical power (i.e., component Sz of the Poynting vector along z) integrated over a full 
period p, divided by the incident optical power integrated over the width w of a single slit. To 
compare the two methods of calculation, we examine three cases in Table 1: (i) p = 0.5µm, which is 
far below both the SPP resonance and the Wood anomaly; (ii) p = 0.99 µm, at the SPP resonance; 
(iii) p = 1.0µm, at the Wood anomaly. The slab thickness is fixed at τ  = 0.7µm in all three cases. 
 

Table 1. Normalized transmittance in three cases, calculated with FDTD and with the Bloch mode method 

η   (FDTD, using different simulation times T )  
p (µm) 

η 
(Bloch mode) T = 100 fs 200 fs 400 fs 1100 fs 2200 fs 5600 fs 

0.50 2.99 2.984 2.982 2.982 2.984 2.983 2.983 

0.99 4.0e-5 -0.057 -0.011 0.011 0.005 0.004 0.000 

1.00 2.46 0.223 0.656 1.070 2.013 2.743 1.690 
 

For p = 0.5 µm, the results obtained with the two methods differ only by about 0.2%; the FDTD 
in this case converges in less than 100 fs, which is the time needed for about 10 round-trips of the 
surface waves between adjacent slits. For p = 0.99µm, the FDTD results for short simulation times 
are obviously wrong (η < 0); for long simulations, the results eventually converge, but this takes 
quite a long time (over 5 ps), corresponding to more than 700 round-trips of the surface waves. For 
p = 1.0µm, the FDTD results are unstable and continue to oscillate around the value predicted by 
the Bloch mode method. In other words, in the vicinity of resonances, FDTD has problems with 
convergence, requiring extremely long simulations for the behavior to settle down. 

In Fig. 2 plots of normalized transmittance η obtained with the Bloch mode method (top) and 
with FDTD simulations (bottom) are shown using the same color scale. We see that the blue, green, 
and yellow bands, which cover most of the plot area, show similar trends and match quite well in 
the two sets of calculations. The Wood anomalies, at p = 1.0 µm and p = 2.0 µm, are clearly visible 
in the Bloch mode plot, but are absent from (or blurred in) the FDTD plot; the FDTD simulations at 
these anomalous points apparently did not run long enough to stabilize. Upon increasing the period 
p, as the SPP resonances at p = 0.99µm and p = 1.98µm are approached from below, the high 
transmissivity bands (yellow and red) obtained with FDTD show discontinuities, a behavior that is 
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absent from the results of the Bloch mode method. Finally, when the slab thickness τ  is at or near 
its optimum value for a given period p, the maximum values of η predicted by the FDTD 
simulations (red bands) are somewhat greater than those predicted by the Bloch mode method. 

In the year 2004, with forty fast processors working in parallel, the FDTD simulations shown in 
Fig. 2 (bottom frame) took nearly two months to complete. These simulations were done blindly, 
because, at that time, we did not know where to pay attention to convergence. With the Bloch mode 
method, however, the job of computing the top frame of Fig. 2 on a personal computer was 
completed in only two days. Needless to say, the latter approach allows finer resolution and higher 
precision as well. 
 
 
 
 
Fig. 2. Color-coded map of normalized transmittance η 
obtained using the Bloch mode method (top), and FDTD 
simulations (bottom). In each case the horizontal axis 
depicts the period p of the slit array, while the vertical 
axis represents the thickness τ of the silver slab. The 
slit-width is fixed at w = 0.1µm, and the TM-polarized, 
normally incident plane-wave has λo = 1.0 µm. SPP 
resonances occur at p = 0.99µm and 1.98µm, while the 
Wood anomalies are at p = 1.0 µm and 2.0 µm. 
 
4. Fabry-Perot cavity formed by internal reflections at the slit’s entrance and exit facets. In 
our FDTD simulations we noticed that, when the period p approaches λ spp, the Fabry-Perot 
resonances become more apparent, that is, for a fixed value of p, the plot of the transmission 
efficiency versus slab thickness τ  becomes narrower around the peak value ηmax; see Fig. 2. Since 
FDTD simulations are time-consuming, the details of the behavior near resonances could not be 
checked in our previous paper [2]. With the Bloch mode technique working efficiently, we can now 
analyze the dependence of η on τ  for different values of the period p. Figure 3 shows plots of the 
normalized transmittance η versus τ  for different values of the period p of the slit array. At p = 0.8λo 
the peaks are tall and broad, but in the vicinity of the surface plasmon resonance at p ~ 0.99λo, 
transmission peaks all but disappear. Immediately beyond the SPP resonance lies the Wood 
anomaly at p = λo, where the transmission peaks re-appear. Note that the peaks that occur at large 
thickness (τ  > 0.5 µm) are somewhat weaker than those that appear in a thin slab (τ  < 0.5 µm), the 
reason being the increased absorption within the slit walls of the thicker slabs. 
 
5. Concluding remarks. The Bloch mode method is a robust and efficient technique for computing 
the optical properties of periodic slit arrays in metallic hosts. The Bloch mode profiles and their 
associated propagation constants are obtained by solving the Maxwell equations within the slits and 
in the metallic regions between adjacent slits [3, 4]. The modal amplitudes (i.e., complex coupling 
coefficients) are then determined by minimizing the E- and H-field discontinuities at the entrance 
and exit facets of the array (i.e., at the interfaces with the incidence and transmittance 
environments). The Bloch mode method solves the problem efficiently, without suffering from the 
numerical dispersion problem associated with FDTD simulations. In contrast, the FDTD method 
can be used extensively in photonic simulations involving non-periodic and/or complex geometries, 
provided that special attention is paid to convergence under resonance conditions. 
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Fig. 3. Normalized transmittance η versus the slab thickness τ  for different values of the period p of the slit array. At 
p = 0.8λo the peaks are tall and broad, but in the vicinity of the surface plasmon resonance at p ~ 0.99λo, transmission 
peaks all but disappear. Immediately beyond the SPP resonance lies the Wood anomaly at p = λo, where the 
transmission peaks re-appear. 
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