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Abstract. The Lorentz law of force is the fifth pillar of classical electrodynamics, the other four 
being Maxwell’s macroscopic equations. The Lorentz law is the universal expression of the force 
exerted by electromagnetic fields on a volume containing a distribution of electrical charges and 
currents. If electric and magnetic dipoles also happen to be present in a material medium, they 
are traditionally treated by expressing the corresponding polarization and magnetization 
distributions in terms of bound-charge and bound-current densities, which are subsequently 
added to free-charge and free-current densities, respectively. In this way, Maxwell’s macroscopic 
equations are reduced to his microscopic equations, and the Lorentz law is expected to provide a 
precise expression of the electromagnetic force density on material bodies at all points in space 
and time. This paper presents incontrovertible theoretical evidence of the incompatibility of the 
Lorentz law with the fundamental tenets of special relativity. We argue that the Lorentz law must 
be abandoned in favor of a more general expression of the electromagnetic force density, such as 
the one discovered by A. Einstein and J. Laub in 1908. Not only is the Einstein-Laub formula 
consistent with special relativity, it also solves the long-standing problem of “hidden 
momentum” in classical electrodynamics.  

1. Introduction. The classical theory of electrodynamics is based on Maxwell’s macroscopic 
equations [1-3], which, in the MKSA system of units, may be written as follows: 

 free( , ) ( , ),t tρ⋅ =D r r∇  (1) 

 free( , ) ( , ) ( , )/ ,t t t t∂ ∂× = +H r J r D r∇  (2) 

 ( , ) ( , )/ ,t t t∂ ∂× = −E r B r∇  (3) 

 ( , ) 0.t⋅ =B r∇  (4) 

Here (r, t) represents position in space-time, ρ free and Jfree are the densities of free charge and 
free current, E is the electric field, H the magnetic field, D the displacement, and B the magnetic 
induction. By definition, o( , ) ( , ) ( , ),t t tε= +D r E r P r  where εo is the permittivity of free space 
and P the electric polarization. Similarly, o( , ) ( , ) ( , ),t t tμ= +B r H r M r  where μo is the 
permeability of free space and M the magnetization. The speed of light in vacuum is found from 
these equations to be related to the electromagnetic (EM) properties of free space via c =1/√μoεo. 

In general, ρ free and Jfree are arbitrary functions of space-time that satisfy the continuity 
equation free free / 0.t∂ρ ∂⋅ + =J∇  Moreover, the 4-vector free free( , )cρJ  is readily Lorentz transformed 
between different inertial frames. The remaining sources of the EM field, P and M, are also 
arbitrary functions of space-time which collectively form a 2nd rank tensor that can be Lorentz 
transformed from one inertial frame to another. Two other 2nd rank tensors that obey the Lorentz 
transformation rules are the field tensors, one formed by E and B, the other by D and H [1,3,4]. 
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One could define bound-charge and bound-current densities bound( , )tρ =− ⋅r P∇  and 
1

bound o( , ) ( / ) ,t t∂ ∂ μ −= + ×J r P M∇  and use them to eliminate D and H from Eqs.(1-4). Maxwell’s 
equations then reduce to the so-called microscopic equations, relating E and B fields to the total 
charge- and current-densities total free boundρ ρ ρ= +  and total free bound.= +J J J  It is thus clear that, as far 
as Maxwell’s equations are concerned, P(r, t) and M(r, t) can be treated as distributions of charge 
and current, and that the knowledge of ρ total(r, t) and Jtotal(r, t) is all that is needed to determine 
the corresponding EM fields throughout the entire space-time. 

P(r, t) and M(r, t) cease to behave as mere distributions of charge and current, however, as 
soon as one takes a close look at their interactions with EM fields involving energy and 
momentum exchange [5]. Since we have discussed these issues at great length elsewhere [6-12], 
we confine our remarks here to a summary of the conclusions reached in earlier studies, namely, 

i) If the magnetic dipoles of Maxwell’s equations were ordinary current loops, the rate of flow of 
EM energy (per unit area per unit time), instead of being the commonly accepted Poynting vector 
S(r, t) = E×H [2,3,5], would be given by μo

−1E×B [1]. 

ii) If the force-density exerted by EM fields on material media obeyed the conventional Lorentz 
law, namely, 

 total total( , ) ,t ρ= + ×F r E J B  (5) 

there would arise situations where the momentum of a closed system would not be conserved. 
This problem has been known since the 1960s, when W. Shockley [13,14] pointed out the 
existence of “hidden momentum” in certain electromagnetic systems [15,16]. 

iii) A generalized version of the Lorentz law, originally proposed in 1908 by A. Einstein and J. 
Laub [17,18] and independently rediscovered by several authors afterward [5,16,19-21], not 
only justifies the definition of the Poynting vector as S(r, t) = E×H, but also eliminates the 
problem of hidden momentum, thus bringing classical electrodynamics into compliance with 
momentum conservation laws [10,15,20]. The Einstein-Laub formula for force density is 

 free free o o o( , ) ( ) ( / ) ( ) ( / ) .t t tρ μ ∂ ∂ μ ∂ ∂ ε= + × + ⋅ + × + ⋅ − ×F r E J H P E P H M H M E∇ ∇  (6) 

To guarantee the conservation of angular momentum, Eq.(6) must be supplemented with the 
following expression for the torque-density exerted by EM fields on material media: 

 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ).t t t t t t= × + × + ×T r r F r P r E r M r H r  (7) 

Equations (6) and (7) guarantee momentum conservation under all circumstances provided 
that the Abraham momentum-density, p(r, t) = S(r, t)/c2, is assumed for EM momentum, and that 
the EM angular-momentum-density is accordingly assumed to be L(r, t) = r ×S(r, t)/c2. 

iv) Conservation of energy is guaranteed by the Poynting theorem derived from Maxwell’s 
Eqs.(2) and (3), in conjunction with the postulate that the rate and direction of EM energy flow 
are given by the Poynting vector S(r, t) = E×H. The energy continuity equation may thus be 
written as 

 o o free
1 1
2 2( , ) 0.( )t

t t t
∂ ∂ ∂ε μ
∂ ∂ ∂

⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ =
P MS r E E H H E J E H∇  (8) 
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Note in the above equation that energy exchange between EM fields and electric dipoles is 
governed by the term E ⋅∂P/∂ t, which is sensible considering the force term (P ⋅∇ )E of Eq.(6) 
and the torque term P×E of Eq.(7). Similarly, the exchange of energy with magnetic dipoles is 
governed by the term H ⋅∂M /∂ t of Eq.(8), which is compatible with the force term (M ⋅∇ )H and 
the torque term M ×H if one imagines a magnetic dipole as a pair of north and south magnetic 
poles attached to the opposite ends of a short spring. 

The goal of the present paper is to demonstrate that the conventional Lorentz law of Eq.(5) 
violates a basic requirement of special relativity. The elementary example presented in the next 
section establishes the inadequacy of the Lorentz law; several other examples could be cited in 
support of the argument, but a single instance of incongruity is all it takes to prove the point. In 
addition, we show that the Einstein-Laub force-density expression of Eq.(6), taken together with 
the torque-density expression of Eq.(7), does not suffer from the aforesaid shortcoming. The 
totality of evidence against the Lorentz law and in support of the Einstein-Laub formula thus 
compels us to abandon the former in favor of the latter. The ultimate test of any physical theory, 
of course, is whether or not its predictions agree with experimental observations. Thus, our 
argument in favor of the Einstein-Laub formulation should not be construed as an argument 
against any other law of force that has been proposed in the past or might be proposed in the 
future, provided that the proposed law is also universal, is consistent with Maxwell’s equations 
and with conservation laws, and complies with special relativity. 

2. Lorentz law and the principle of relativity. Consider a point-charge q at a fixed distance d 
from a magnetic point-dipole mox^', as shown in Fig.1. The magnetic dipole which, in the Lorentz 
picture, is essentially a small, charge-neutral loop of current, experiences neither a force nor a 
torque from the point-charge. The situation is very different, however, for a stationary observer 
in the xyz frame, who watches the point-charge and the magnetic dipole move together with 
constant velocity V along the z-axis. It is not difficult to Lorentz transform the current loop and 
also the electric field of the point-charge from x'y'z' to the xyz frame. The stationary observer 
will see an electric dipole po y^ =Vεomo y^, traveling along with the magnetic dipole mo x^, both 
experiencing the electric as well as the magnetic field produced by the moving point-charge q. 
The net Lorentz force on the pair of dipoles (mo x^ and po y^) turns out to be zero, but a net torque 

2
o ˆ( /4 )Vqm dπ=T x  acts on the dipole pair. The appearance of this torque in the xyz frame in the 

absence of a corresponding torque in the x'y'z' frame is sufficient proof of the inadequacy of the 
Lorentz law. In contrast, the force- and torque-density expressions in Eqs.(6) and (7) yield zero 
force and zero torque on the dipole(s) in both reference frames. 
 
 
 
 
 
 
 
 
 

Fig.1. In the inertial x'y'z' frame, the point-charge q and the point-dipole mox^ ' are stationary. The 
x'y'z' system moves with constant velocity V along the z-axis, as seen by a stationary observer in 
the xyz frame. The origins of the two coordinate systems coincide at t = t' = 0. 
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The proof of the above statements requires the use of Dirac’s delta-function δ (⋅) to represent 

the magnetization of the point-dipole in the x'y'z' frame as 

 o ˆ( , ) ( ) ( ) ( ).t m x y z dδ δ δ′ ′ ′ ′ ′ ′ ′= −M r x  (9) 

Lorentz transformation to the xyz frame then yields a pair of point-dipoles, as follows: 

 o ˆ( , ) ( ) ( ) [ ( ) ],t m x y z Vt dγ δ δ δ γ= − −M r x  (10a) 

 o o ˆ( , ) ( ) ( ) [ ( ) ].t V m x y z Vt dγ ε δ δ δ γ= − −P r y  (10b) 

Here γ =1/√1−V2/c2. In the x'y'z' frame, the E-field produced by the point-charge q is 

 2 2 2 3/2
o

ˆ ˆ ˆ( )( , ) .
4 ( )

q x y zt
x y zπε
′ ′ ′ ′ ′ ′+ +′ ′ ′ =
′ ′ ′+ +

x y zE r  (11) 

When the above E-field is Lorentz transformed to the xyz frame, the resulting fields will be 

 2 2 2 2 3/2
o

ˆ ˆ ˆ[ ( ) ]( , ) ,
4 ( )[ ]

q x y z Vtt
x y z Vt

γ
πε γ

+ + −
=

+ + −
x y zE r  (12a) 

 2 2 2 2 3/2

ˆ ˆ( )( , ) .
4 [ ( ) ]

Vq x yt
x y z Vt
γ

π γ
−

=
+ + −

y xH r  (12b) 

To calculate the conventional Lorentz force on the dipole pair of Eqs.(10), we add the force 
of the E-field on bound charges to that of the B-field on bound currents; see Eq.(5). The total 
force and torque will then be found by integrating the corresponding densities, namely, 

 1
o o( , ) ( ) ( / ) ,[ ]t t∂ ∂ μ μ−= − ⋅ + + × ×F r P E P M H∇ ∇  (13a) 

 ( , ) ( , ).t t= ×T r r F r  (13b) 

The calculation is straightforward with the aid of the sifting property of the delta-function 
and its derivative, namely, 

 o o( ) ( )d ( ),f x x x x f xδ
∞

−∞
− =∫  (14) 

  o o( ) ( )d ( ).f x x x x f xδ
∞

−∞
′ ′− = −∫  (15) 

In similar fashion, one can determine the Einstein-Laub force and the corresponding torque 
on the dipole pair of Eqs.(10) using the densities given in Eqs.(6) and (7). 

We close this section by noting that certain unusual situations could arise when “force” is 
transformed from one inertial frame to another. For example, in the coordinate system of Fig.1, a 
thin, straight, charge-neutral wire carrying a constant, uniform current-density Jfree along x' in the 
presence of a constant, uniform E-field (also along x') does not experience a Lorentz force. 
However, the same wire seen by the stationary observer in the xyz frame does experience a 
Lorentz force along the z-axis. Nevertheless, special relativity is not violated here, because the 
energy delivered by the E-field at the rate of E ⋅Jfree to the current causes an increase in the mass 
of the wire. Seen by the observer in the xyz frame, the wire has a non-zero (albeit constant) 
velocity along z and, therefore, its relativistic momentum p increases with time, not because of a 
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change of velocity but because of a change of mass! The observed electromagnetic force in the 
moving frame thus agrees with the relativistic version of Newton’s law, F = dp/dt. In contrast, 
the situation depicted in Fig.1, where a magnetic dipole experiences a torque in the moving 
frame, does not have a similar explanation.  

3. Concluding remarks. We have presented a single example of a system that violates special 
relativity under the Lorentz law, while complying with relativity under the Einstein-Laub 
formula. There exist several other examples that show the superiority of the Einstein-Laub force 
expression (accompanied by the corresponding torque formula). Considering that the Lorentz 
law also fails to conserve momentum in certain situations involving magnetic media, while the 
Einstein-Laub force (and its associated torque) show across-the-board consistency with the 
conservation laws, it is only natural to consider abandoning the former and adopting the latter as 
the universal law of electromagnetic force (and torque). 

We are cognizant of the fact that the mathematical consistency of the Einstein-Laub force 
equation with conservation laws and with special relativity does not, in itself, establish the 
validity of the formula as a law of Nature. Nor does our demonstration of consistency exclude 
other formulations from being viable candidates to replace (or to augment) the Lorentz law. 
Ultimately, of course, it is agreement with a broad range of experimental observations that is 
needed to establish the validity of a given formulation. 

The extensive review by Brevik [22] contains a wealth of information about early efforts to 
determine an appropriate energy-momentum tensor for the electromagnetic field in the presence 
of dielectric and magnetic media. In some of the reported experiments, the predictions of the 
Helmholtz force equation were found to be closer to actual observations than those of the 
Einstein-Laub formulation. Without discounting the possibility that the experimental results were 
in fact correctly interpreted, we point out that theoretical analyses based on the stress-energy 
tensor are fraught with errors and inaccuracies. Loudon [23], for example, has emphasized “the 
simplicity and safety of calculations based on the Lorentz force and the dangers of calculations 
based on derived expressions involving elements of the Maxwell stress tensor, whose 
contributions may vanish in some situations but not in others.” It is also possible, starting with 
the Einstein-Laub force and the Abraham momentum density expressions, to arrive at a different 
stress tensor than the one that has been used in the past to evaluate the predictions of Einstein 
and Laub against experimental observations [8]. All in all, it is our contention that the existing 
evidence against the Einstein-Laub formula, while serious, is not fatal, and that its 
aforementioned strengths along with its widespread resurgence in the literature [5,15,16,19-21] 
– especially since Shockley’s discovery of hidden momentum [13,14] – justify a closer 
examination of the experimental evidence against the formulation. 

Assuming that experimental observations end up supporting the Einstein-Laub hypothesis, 
the fundamental postulates of classical electrodynamics will be the macroscopic equations of 
Maxwell, Eqs.(1) to (4), the Einstein-Laub force-density expression, Eq.(6), the torque-density 
expression, Eq.(7), the Poynting postulate that S(r, t) = E×H represents the rate of flow of EM 
energy, and the Abraham postulate that EM momentum and angular momentum densities are 
given by p(r, t) = S(r, t)/c2 and L(r, t) = r×S(r, t)/c2, respectively. These postulates, which are 
consistent with the conservation laws of energy, momentum, and angular momentum, and also 
comply with the requirements of special relativity, would then apply to any electromagnetic 
system in which free charge, free current, polarization, and magnetization interact with EM 
fields. 
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Note that we have not specified any constitutive relations that would determine the response 
of material media to EM fields. The fundamental postulates of electrodynamics are completely 
general and apply to all kinds of material media, be they linear or nonlinear, passive or active, 
moving or stationary, and whether or not these media are dispersive, absorptive, homogeneous, 
hysteretic, etc. 

We emphasize, once again, that although P and M can be replaced with equivalent bound-
charge and bound-current densities within Maxwell’s equations, such substitutions are not 
allowed in the context of force, torque, and energy. In other words, electric and magnetic dipoles 
exhibit certain special properties in their interactions with EM fields that set them apart from 
ordinary charge and current distributions. An electric dipole should not be considered as merely 
a pair of positive and negative charges attached to the opposite ends of a spring, nor should a 
magnetic dipole be thought of as a simple Amperian current loop. With the demise of the 
Lorentz law of force, electric and magnetic dipoles acquire individual identities above and 
beyond what Maxwell’s equations have traditionally ascribed to them. The essential quantum 
mechanical nature of electric and magnetic dipoles is such that their interactions with EM fields 
cannot be described in terms of equivalent (bound) charge and current densities; rather, these 
interactions are governed by Eqs.(6) and (7) when linear and angular momenta are being 
exchanged, and by Eq.(8) in situations involving an exchange of energy. 
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