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Abstract - Computer simulations of a two-dimensional lattice of magnetic dipoles are performed on the Connection 
Machine. The 256 x 256 hexagonal lattice is a discrete model for thin films of amorphous rare earth-transition metal 
(RE-TM) alloys, which have application as the storage media in erasable optical data storage systems. In these 
simulations the dipoles follow the dynamic equation of Landau-Lifshitz-Gilbert under the influence of an effective 
field arising from local anisotropy, near-neighbor exchange, classical dipole-dipole interactions, and an externally 
applied field. Using mean-field theory, we have calculated the temperature dependencies of the subnetwork 
magnetizations, the effective fields, the gyromagnetic coefficient, and the Gilbert damping parameter. These results 
are then used in the simulation of the thermomagnetic recording process, where a focused laser beam creates a hot 
spot and allows an external magnetic field to reverse the direction of local magnetization. The onset of nucleation 
and the dynamics of growth/contraction by domain wall motion have been studied by means of these simulations. 
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BACKGROUND 

The processes of magnetization reversal in thin amorphous 
films of rare earth-transition metal alloys play the central role 
in the recording and erasure of information in erasable optical 
data storage systems. A major goal of our research effort over 
the past several years has been the understanding of the 
nanomagnetic processes involved in the nucleation and growth 
of submicron-size domains within thin film magnetic media. 
We have based our investigations on computer simulations of 
large arrays of interacting dipoles, following the dynamic 
equation of Landau, Lifshitz and Gilbert (commonly referred 
to as the LLG equation) [1,2]. The massive parallelism of the 
Connection Machine which allows each dipole to be associated 
with a separate processor, combined with the Fourier 
transform algorithm [3,4] for computing the demagnetizing 
field, have made such large-scale simulations possible [5]. 

In previous publications [5,6] we reported the effect of 
local random axis anisotropy on nucleation coercivity. "Local" 
in this context means that each cell of the lattice is randomly 
and independently assigned an easy axis within a cone of 
allowed directions around the perpendicular Z axis. Under 
such conditions, it was found that the fields required for the 
nucleation of reverse-magnetized domains were generally 
higher than those observed in practice. Various submicron-
size "defects" were then introduced in the magnetic state of the 
lattice and the values of coercivity corresponding to different 
types, sizes, and strengths of these defects were computed. A 
typical defect is a few hundred angstroms in diameter and has 
one of the following characteristics: larger (or smaller) than 
average anisotropy constant, tilted easy axis away from the 
normal, no magnetic moment (i.e., void), weak exchange 
coupling to its neighbors at the boundaries, etc. To give an 
example, voids were found to have insignificant effects on 
nucleation coercivity, whereas reverse-magnetized seeds, 
formed and stabilized in areas with large local anisotropy, 
could substantially reduce the value of the critical field for 
nucleation. 

Random axis anisotropy and magnetic defects also create 
barriers to domain wall motion. These barriers are overcome 
only when sufficiently large magnetic fields (in excess of the 
so-called wall coercivity) are applied. The various aspects of 
wall coercivity were the subject of another previous 
pUblication [7]. Again to give an example, we found that 
unlike nucleation, wall motion coercivity is significantly 
modified in the presence of voids. The simulation results 
indicated a tendency for the voids to attract and pin the walls. 
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It was also revealed through these simulations that wall 
coercivity in amorphous RE-TM alloy films is generally lower 
than the corresponding nucleation coercivity, in agreement 
with the experimentally observed square shape of the 
hysteresis loops in these media. 

In the present paper we report results of simulations of the 
thermomagnetic recording process. Here the presence of a 
temperature profile adds another level of complexity to the 
problem. Magnetic properties of the materials of interest in 
optical data storage are strong functions of temperature. Some 
characteristics (such as M. and Ku) can be measured directly, 
while others (such as Ax) must be obtained from model 
calculations. Mean-field theory [8] has been employed to 
match model parameters with the available experimental data, 
and to extract from them the temperature-dependencies of the 
"hidden" characteristics. Figure 1 shows the temperature 
dependence of the various material parameters used in these 
simulations; for concreteness, we have confined attention to a 
Tbzz(FeCo)73Ars alloy material. The saturation magnetization 
M. and the individual subnetwork magnetizations MRE and 
MTM are shown in Fig. lea). The material has a compensation 
point at T = 250 K and its Curie point temperature is Tc = 
441 K. Figure I(b) shows the material's anisotropy energy 
constant Ku and its exchange stiffness coefficient Ax versus 
temperature. The inset is a plot of the effective anisotropy 
field Hk ;= 2Ku / M. versus T in the vicinity of the Curie point; 
we shall return to this curve later and point out its significance 
in conjunction with the nucleation process. 

From the curves of Ku(T) and Ax(T) one can easily 
derive the curves of Fig. l(c) which show the wall-energy-
density u.., and the wall-width t::.. as functions of T. 
Although u. and t::.. are not needed for the simulations, they 
are nonetheless important characteristics of the material and 
we shall have occasion to use them for the analysis of the 
results. Note in particular that the wall-width is rather weakly 
dependent on T, going from about 200 A at the room 
temperature to about 250 A just below the Curie point. 
Finally, Fig. led) shows plots of the effective gyromagnetic 
ratio 1 eff and damping coefficient Qeff versus temperature. 
These parameters are obtained from a generalization of the 
LLG equation to ferri-magnetic systems with strongly coupled 
magnetic subnetworks; details of this generalization are 
described in the next section. The third section is devoted to 
the thermomagnetic simulation results and their discussion. 
Closing remarks and final thoughts appear in the last section. 
An appendix is added at the end to clarify the relationship 
between Ax and the effective exchange field H,mg which acts 
on individual dipoles of a hexagonal lattice. 
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Fig. 1. Temperature dependence of the various magnetic parameters of amorphous Tbza(FeCo)73A,s. used as 
recording medium in the computer simulations. (0) Saturation and subnetwork magnetizations. (b) Anisotropyand 
exchange coefficients. The inset shows the effective anisotropy field HI< in the vicinity of the Curie point. (c) 
Domain wall energy density and wall-width. (d) Effective gyromagnetic ratio 1effand Gilbert damping parameter 
aeff· These are calculated from Eqs. (4) and (5) assuming 11 - g1ISB/ft.. 1 z ... gzISB/ft. and a1 = az = 0.1. Subnetwork 
magnetizations m1(T) and mz(T) were obtained from the mean-field theory. 

DYNAMIC EQUATION FOR STRONGLY-COUPLED 
FERRIMAGNETS 

Consider a thin magnetic film consisting of two antiferro-
magnetically coupled subnetworks. Let m1 denote the 
magnetization vector of the first subnetwork. The magnitude 
of this vector will be denoted by m1 (where m1 ~ 0) and the 
unit vector parallel to m l will be identified as ISI" The 
gyromagnetic ratio for the first subnetwork is 11, and the 
corresponding Gilbert damping parameter is a1 • Similarly ma' 
ISa• mz• 1z and az represent the second subnetwork (mz ~ 0). 
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Let Homa (where Ho :s 0) be the effective local exchange field 
of the second subnetwork on the first. Similarly. H oIDI is the 
effective local exchange field of the first subnetwork on the 
second. The remaining effective fields on the moments of the 
two subnetworks shall be denoted by HI and Ha. respectively. 
Under these circumstances the LLG equations for the local 
dipole moments of individual subnetworks are written 

• • 
m1 = - 11 m1 x (HI + Homa) + a1 m1 x IS! (I) 

~a = - 1z ma x (Ha + HOm!) + a z ma x Pa (2) 



Proceedings of Magneto-Optical Recording International Symposium '91, J. Magn. Soc. Jpn., Vol. 15, Supplement No. SI (1991), pp. 299-306 
© 1991 by The Magnetics Society of Japan 

The superscript dot here and henceforth indicates the time 
derivative. If Ho is sufficiently large, the two moments m1 
and ms will remain strongly coupled and antiparallel at all 
times. In this case we define a net moment for the 
ferrimagnetic material along the unit vector P with a 
magnitude equal to (m1-mZ)' Obviously P = PI = -Ps' 
Equations (I) and (2) are now combined to yield 

(3) 

It is now possible to define net effective values for 1, a and H 
as follows: 

(4) 

a1m1 + azmz 
11 1z (5) 
m1 _ mz 
11 1z 

(6) 

Replacing in Eq. (3) the effective values just defined, one 
obtains 

(7) 

At first glance there appears to be two singularities associated 
with the above equation. The first singularity occurs at the 
angular momentum compensation, where m/11 = mzi1 z. 
Since both 1eCf and aeff are infinite at this point, P aligns itself 
with the local effective field instantaneously and without 
gyration. The second singularity arises at the magnetization 
compensation, where m1 = mz. Here 1eff .. 0 and Heff is 
infinite. However, as will be shown below, the product of 
1eff and Heff turns out to be finite. The LLG equation for the 
tightly coupled ferrimagnet in Eq. (7) is thus free from 
physical singularities and describes the dynamic behavior of 
the net magnetic moment unambiguously. 

We now proceed to express the effective field in Eq. (6) 
in terms of its fout components, namely, the externally 
applied field Hext , the demagnetizing field Hdmag, the 
anisotropy field Hani., and the exchange field JF<hg. The 
effective field is thus written 

H = ~[H ext+ H dmag+ H anil+ 
~ mCmz 1 1 1 

nearest 
neighbors 

nearest 
neighbors 

(8) 

The external field is the same for both subnetworks, that is, 
H1ext = HJext. Similarly, H1dmag = HJdmag. As for the field 
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of anisotropy, we assume that both subnetworks have uniaxial 
magnetic anisotropy along the same unit vector n, but with 
different anisotropy constants Kul and K u2 , respectively. 
Thus 

(9) 

H ani. = 2Ku Z (p . n) n 
J m

Z 
S 

(10) 

Next, let us assume that the magnetization of the film is 
represented by a two dimensional hexagonal lattice of dipoles. 
It is shown in the Appendix that the effective exchange field 
exerted on a given dipole by the dipole in a near.-neighbor cell 
may be written as 

xhg 4AXl 
HI = + 3 m

1 
dZ Pn.n. (11) 

xhg 4 Axz (12) HJ = - 3 m dZ Pn.n. 
Z 

where Pn .n• is the direction of the magnetic moment of the 
near-neighbor dipole, and d is the constant of the (hexagonal) 
lattice (i.e., center-to-center distance between nearest-
neighbor cells). We designate Kul + Ku2 as the net anisotropy 
energy Ku and AXl + Ax2 as the net exchange stiffness 
coefficient Ax of the ferrimagnetic material. Replacing the 
above results and definitions into Eq. (8) yields 

2K H = Hext + Hdmag + u (p . n) n 
eff m1 - mz 

nearest 
neighbors 

Pn.n. (13) 

Equation (13) is the complete expression for the effective field 
which, together with Eqs. (4) and (5), provide the parameters 
of the LLG equation. 

RESULTS AND DISCUSSION 

The temperature distribution imposed on the lattice has a 
Gaussian spatial profile, with an exponential rise followed by 
an exponential fall in time, as shown in Fig. 2. The following 
equation succinctly describes this temperature profile: 

T(r, t) = To + (T max - TO> exp [-(r/r0>2J!(t) (14) 

In the above equation To is the ambient temperature (To .. 
300 K), T maX is the maximum temperature reached during the 
heating cycle (Tmax = 500 K), ro is the l/e radius of the 
Gaussian hot spot (ro = 1800 A) which is also related to the 
full-width-at-half-maximum of the spatial distribution 
(FWHM = 1.665r 0 = 0.3 pm), and !(t) is the time-dependence 
of the temperature profile whose functional form is given in 
the caption to Fig. 2. This time-dependence is such that at 
t = 0 the lattice is at the uniform temperature of To, by t = 
tpeak = 10 ns the temperature has peaked everywhere with a 
maximum of Tmax at the center of the lattice, and by t .. tend 
= 20 ns the entire lattice has dropped back to the ambient 
temperature. For the sake of simplicity we have ignored the 
effects of heat diffusion and assumed that the spatial 
temperature profile remains the same at all times. Note also 
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that the assumed profile is stationary, that is, the center of the 
hot spot does not move over the lattice. These characteristics 
are, of course, somewhat artificial, considering the nature of 
the laser-induced heating processes in actual media. What is 
more, the assumed pulse duration is relatively short compared 
to the current practice of thermomagnetic recording. 
Nonetheless, we believe the neglect of such details to be of 
little consequence as far as the basic processes of 
magnetization reversal are concerned. 

The two-dimensional lattice in all the simulations had 256 
x 256 dipoles with hexagonal lattice cells, periodic boundary 
conditions, and a lattice constant of d = 10 A. The area of the 
simulated lattice is thus 0.256 I'm x 0.222 I'm. The assumed 
film thickness, corresponding to the height of each and every 
cell in the lattice, is h = 500 A. The imposed temperature 
distribution with FWHM = 0.3 I'm is wider than the lattice 
itself but, as it turns out, magnetization reversal is confined to 
the region near the center of the hot-spot and the. phenomena 
of interest therefore occur within the boundary of the lattice. 
Since the Curie point temperature of the material under 
consideration is Te = 441 K, at the peak temperature 
(occuring at t = 10 ns) the radius of the Curie disk (i.e., the 
paramagnetic region) is 'e = 1065 A. The Curie disk first 
appears at t = 3.4 ns and expands until t .. 10 ns, at which 
point it begins to shrink rapidly and disappears at t = 11 ns. 

In the limited number of simulations conducted to date, 
we have observed that reversal begins by nucleating a domain 
wall at the rim of the Curie disk. A simple analysis shows 
that such nucleation is possible only when the externally 
applied field Hext is greater than the effective anisotropy field 
Hk within a certain annulus surrounding the Curie disk. Let 
Te - denote a temperature slightly below the Curie point and 
allow M. (Te -) to be the saturation magnetization at that point. 

540 

500 

ID 460 
>-
::l 
1ti 
CD 420 a. 
E 
ID 
I- 380 

340 

Time (ns) 
300L-----L-----L-----~--~~----~ 

o 5 10 15 20 25 
Fig. 2. Temperature distribution on the lattice. The spatial 
profile is Gaussian with FWHM .. 0.3 I'm. The temporal 
profile tU) is 

1 - exp (-tIT1) • 

1 - exp (-/peak 11'1) , 

1- __ 1_-_e_x~p~[~(tpe~ak~-_t~)/~T~z]L-

1 - exp [(tpeak - lend)/T z] 

In the particular case shown here tpeak = IOns, lend = 20 ns, 
and 1'1 = 1'2 = 3 ns. 
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Similarly denote the corresponding value of the wall energy 
density by Uw (Te -) and that of the wall width by .o.w (Te -). 
Ignoring the demagnetizing effects and considering only the 
balance between wall energy and external-field energy, the 
formation of a domain wall at the Curie rim requires that the 
following condition be satisfied: 

Replacing for Uw and .o.w in terms of Ku and Ax , we find the 
necessary condition for nucleation as follows: 

(16) 

Typically Hk(D is a decreasing function which rapidly goes to 
zero at the Curie point (see the inset in Fig. l(b». Thus, as 
one moves away from the curie rim, one finds a sharp increase 
in H k . If, however, Hk remains below Hext in the immediate 
neighborhood of the Curie rim (say, within an annulus of 
width .o.w), then the preceding analysis indicates that wall 
formation is energetically favorable and the nucleation process 
may therefore commence. Conversely, when Hk at the radius 
of , = 'e+ .o.w is greater than Hext , a wall becomes costly in 
terms of energy and there can be no nucleation. 

In light of the above discussion it is clear that the 
temperature gradient at the Curie rim plays an important role 
in the nucleation stage of the reversal process. A small 
gradient at the rim provides for a slow rise in H k , thus 
facilitating nucleation. A large gradient, on the other hand, 
makes the immediate neighborhood of the Curie disk less 
hospitable to domain walls. In the case of a Gaussian 
temperature profile with lie radius of '0' the maximum 
gradient occurs at , = (1/.,12) '0' This corresponds in our 
simulations to , = 1273 A, which is somewhat greater than the 
largest radius of the Curie disk attained. Now, a domain 
formed during the heating cycle (i.e., when I;!; tpeak) must 
expand rapidly or else it will be consumed by the advancing 
Curie disk. Nucleation followed by rapid growth during the 
heating cycle is not impossible but is unlikely, especially when 
the applied field Hext is relatively weak. The more likely 
scenario is the formation of a wall (at the Curie rim) during 
the cooling period, i.e., when I ~ tpeak' In this event the 
newly created wall can remain stationary, or even shrink 
slowly, and yet survive. In addition, the cooling period has 
the desirable feature that with the advancing of time the 
temperature gradient at the Curie rim declines, thus rendering 
nucleation more likely. 

In the absence of coercivity mechanisms, such as defects 
and material inhomogeneities that would pin the domain wall, 
a domain nucleated in the thermomagnetic process will be 
unstable. Such domains will either expand or collapse, 
depending on the energetics of the magnetic medium and the 
magnitude of the applied field. Since the subject of wall-
motion coercivity and the related issue of domain stability 
have already been addressed in another publication [7], they 
shall not concern us in this paper. In the remainder of this 
section we present simulation results that pertain to the 
formative stages of domain nucleation and the early phases of 
adjustment (via expansion andlor contraction) during 
thermomagnetic recording. 

Figure 3 shows the state of magnetization of the lattice at 
several instants of time during the cooling period, with 
Hext = 500 Oe. The simulation started at I = 10.12 ns, when a 
shrinking Curie disk had a radius of 'e = 1000 A. Frame (a) 
in Fig. 3 shows the state of the lattice at 1= 10.68 ns. The 
gray region at the center is above the Curie temperature (in 
our terminology, the gray region is the Curie disk). The 
colorful pixels around the rim are the dipole moments which, 
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in anticipation of wall formation, have rotated into the plane 
of the lattice. The color of each pixel represents the 
orientation of its dipole. The remaining white pixels are the 
dipoles which are still in the remanent state, being 
perpendicular to the lattice and pointing upward. The next 
Frame, (b), shows the state of the lattice at t = 10.92 ns where, 
in addition to the colorful pixels representing a continuous 
domain wall, there is a thin black ring surrounding the Curie 
disk. Black pixels correspond to fully reversed dipoles, that is, 
they are perpendicular to the lattice and point downward. In 
Frame (c) we show the situation at t = 11 ns, where the Curie 
disk is about to disappear and leave a reverse-magnetized 
domain behind. The final Frame (d) in this sequence shows a 
shrinking domain at t = 11.58 ns; apparently the wall-energy-
density Uw is too large for the external and demagnetizing 
fields to overcome, thus forcing the collapse of the domain. 
In practice, of course, defects and inhomogeneities of the 
medium can prevent this collapse (by pinning the wall) and 
stabilize the domain, even in the absence of the external field. 

Another example of the thermomagnetic simulations is 
given in Fig. 4. The situation here is very similar to that of 
the previous example, with the exception of the applied field 
being Hext = 1000 De. Frames (a)-(d) in Fig. 4 correspond to 
instants of time t = 10.20 ns, 10.60 ns, 10.96 ns and 11.58 ns, 
respectively. Comparing the results with those of the previous 
example, we note that the larger field causes nucleation to 

a) 

c) 

begin earlier. Also, the domain formed in the latter case is 
more likely to be stable, since the larger Hext seems to have 
successfully counteracted the inclination of the wall to 
collapse. 

CLOSING REMARKS 

Thermomagnetically recorded domains on a uniform 
lattice are unstable and either expand or collapse at the end of 
the write cycle. On the other hand, real materials are 
nonuniform; the large coercivities exhibited by them is but 
one manifestation of their nonuniformity. We introduced 
coercivity mechanisms in the simulated lattice and studied the 
recording process in the presence of various defects and 
inhomogeneities. Spatial fluctuations of the magnetic 
parameters (such as the directions of the local easy axes) from 
one lattice cell to another were found to have little effect, if 
any, on the stability of the domains. This is understandable in 
light of the fact that wall-width in amorphous RE-TM alloys 
is of the order of 100 A, whereas the lattice constant is only 
10 A; the fluctuations are therefore averaged out. When 
spatial fluctuations and material inhomogeneities were 
distributed over patches of random shape and size (average 
patch diameter ~ several hundred angstroms), they proved to 
be successful in pinning the domain walls, thus stabilizing the 
recorded domains. 

b) 

d) 

Fig. 3. Snap-shots from the state of magnetization of the lattice during the cooling period. The magnitude of the 
external field is Hext = 500 De. The white (black) pixels are magnetized perpendicular to the plane of the lattice and 
point upward (downward), the central gray region is above the Curie temperature, and the colored pixels have 
magnetization in the plane (or inclined towards the plane) of the lattice. (a) t = 10.68 ns. (b) t = 10.92 ns. (c) t = 
11 ns. (d) t = 11.58 ns. 
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a) b) 

c) d) 

Fig. 4. Same as Fig. 3 but with Hext = 1000 Oe. (a) t = 10.20 ns. (b) t =- 10.60 ns. (c) t = 10.96 ns. (d) t = 11.58 ns. 
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APPENDIX 

Consider a thin magnetic film parallel to the XY plane, 
with finite thickness h and magnetization distribution m(x,Y). 
Notice that m is independent of z, implying that the 
magnetization is uniform throughout the film thickness. 
Moreover, we shall assume that the magnitude of the 
magnetization is constant everywhere, and denote this constant 
value by m. Thus the spatial variations of m(x,y) are due to 
its orientation variations only. We define the unit-magnitude 
field p(x,y) = m(x,y)/m and let the exchange stiffness 
coefficient of the film over the region of interest be A. The 
exchange energy Exhg of the film is then given by 

Our next task is to relate the exchange energy, expressed in 
Eq. (AI) as an integral over a continuum, to the discrete 
distribution of dipoles on a hexagonal lattice. Assume that the 
lattice constant is d and let (xo' Yo) be the center of an 
arbitrary lattice cell. The dipole moment associated with this 
cell will be denoted by mo where 
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(A2) 

In a similar fashion, define the six nearest neighbors of mo 
and denote them by mn , where I ~ n ~ 6. As before, Pn will 
be a unit vector parallel to mn . Let dn be the vector 
connecting (xo' Yo) to the center of its near-neighbor cell at 
(xn , Yn)' Clearly, the magnitude of dn is equal to the lattice 
constant d for I ~ n ~ 6. One then writes 

Pn-Po ~ (VIJx·dn)~+(VI-'y·dn»)!+(Vp •. dn)~ (A3) 

Forming the dot product of Eq. (A3) with itself, one obtains 

2 - 2 Pn • Po ~ (VIJx)3 d3 cos29 n + (VI-'y)2 d2 cos2~n 

(A4) 

In the above equation eo, ~n' On are the angles between V JJx. 
VJ.ly , VJ.ls and do, respectively. Summing Eq. (A4) over the 
six nearest neighbors of mo yields 

6 6 
-2 '\" . _ d2 {(V )2 '\" I + cos 290 L Pn Po - IJx L 2 

n=1 n=1 
6 6 

+ (VI-'y)2 L I + c~s 2~0 + (VJ.I.)z L I + c~s 2flu } 

n=1 n=1 
+ constant (AS) 



Proceedings of Magneto-Optical Recording International Symposium '91, J. Magn. Soc. Jpn., Vo!. 15, Supplement No. SI (1991), pp. 299-306 
© 1991 by The Magnetics Society of Japan 

Thanks to the symmetry of the problem, sums of cosines in all 
cases turn out to be zero. Multiplying the remaining terms in 
Eq. (A5) by the constant factor 2A/3d2 results in 

-[j1, 'f .. j. Po ~ 2A [ (Vp,.) , + (V.,.)' + (vp.)'] 

+ constant (A6) 

The right-hand-side of Eq. (A6) is the exchange energy 
density of the interaction between mo and its nearest 
neighbors. (Note the factor of 2 that has been included in this 
expression in order to account for the interactions in both 
directions.) The effective exchange field acting on mo is thus 
found to be 

6 
4A ~ 

Hxhg = 3m d2 L Pn 
o 

n=l 
(A7) 
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This is the desired result, relating the exchange stiffness 
parameter A of the continuum formulation to the effective 
exchange field on individual dipoles of the discrete hexagonal 
lattice. 
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