
Journal of Applied Physics 66, 3727 (1989); https://doi.org/10.1063/1.344057 66, 3727

© 1989 American Institute of Physics.

On the self-magnetostatic energy of jagged
domain walls
Cite as: Journal of Applied Physics 66, 3727 (1989); https://doi.org/10.1063/1.344057
Submitted: 09 December 1988 . Accepted: 13 June 1989 . Published Online: 27 October 1998

M. Mansuripur

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/1678661887/x01/AIP/Ametek_JAP_PDF_1640x440_Oct3-9_2018/Ametek_JAP_PDF_1640x440_Oct3-9_2018.jpg/67454736696c7571664673414449306c?x
https://doi.org/10.1063/1.344057
https://doi.org/10.1063/1.344057
https://aip.scitation.org/author/Mansuripur%2C+M
https://doi.org/10.1063/1.344057
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.344057
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(Received 9 December 1988; accepted for publication 13 June 1989) 

The demagnetizing energy of thin magnetic films can be written in terms of the Fourier 
components of the magnetization distribution. This formalism is used to investigate the 
structure of jagged domain waHs in both perpendicular and in-plane media. Also introduced is 
a set of correlation functions and their relationship to demagnetizing energy density in media 
with random magnetization distribution. 

I. DEMAGNETIZING ENERGY Of JAGGED WAllS 

Thejaggedness of transition regions in magnetic record
ing is a major source of jitter noise in readout. In an attempt 
to better understand the magnetostatic origins of jaggedness, 
we have studied a simple model of the transition region. The 
analysis is based on an expression for the self- (demagnetiz
ing) energy density of thin films in the Fourier domain 
w hieh is written as I 

00 

I {G(hf)IMmn oZl2 

(la) 

In Eq. (la) the magnctostatic energy per unit volume is 
denoted by EM' The magnetic film ofthickness It has dimen
sions Lx XLy in the xy plane; its magnetization distribution 
M(x,y) is uniform through the thickness but arbitrary oth
erwise. To simplify the analysis, periodic boundary condi
tions have been assumed, namely, the xy plane is completely 
covered with identical Lx XLy tiles. The Fourier compo
nents of magnetization distribution are therefore given by 

MinI! = _1_ (Lx (L
y 

M(x,y) 
L"Ly Jo Jo 

xexp [ - i2tr(mx + ~)\]dX dy. (lb) 
Lx Ly 

The x and y components of frequency in the Fourier 
domainarefx = m/Lx and!;, = n/Ly. Themagnitudeofthe 

frequency vector fisf = ~-+]; and the unit vector fr",n is 
in the direction off, ioe., 

(Ie) 

Finally, the function G( 0) in Eq. (Ia) is a low-pass spatial 
filter with circular symmetry that is given by 

G(r) = exp( - 1Tr)[sinh(trr)/trr]. (ld) 

Note that the width of the filter is inversely proportional to 
the film thickness ho A plot of the function G(hf) is shown in 
Fig. L According to Eq. (la), therefore, the perpendicular 
components of magnetization contribute to demagnetizing 
energy after going through a low-pass filter, while the in
plane components contribute after going through a high
pass filter. 

Let us now consider an array of walls, aU paranel to the y 
axis, with an arbitrary amount of jaggedness in each wall as 
shown in Fig. 20 For simplicity we assume a sinusoidal mag
netization distribution where M(x,y) has the following 

three components in the Cartesian coordinate system: 

111 (X,y) = IM
1
COS[3!!..(x + a sin 2trY )] , (2a) 

Lx Ly 

f-l2(X,Y} = IMlsin[~:(-~+aSin 2;;)]cos¢;o, (2b) 

( ) IMI' f217"( . 21TY)10 ,I. (2) P3 x,y = Ism i-x + a sm -- Ism 'i'0' C 
t L" Lv ,J 

In these equations iM\, a constant, is the magnitude of the 
magnetization vector, a and Ly are the amplitUde and the 
period of jaggedness, respectively, Lx is the period of the wall 
pairs, and ¢;o is a constant angle which determines the rela~ 
tive magnitUdes of flz and 113' By assigning the three compo~ 
nents of 1\:1 to the x, y, and z axes in various orders, one 
obtains several types of 1800 walls as follows: 

(i) in-plane head-to-head wall: 

M = Ii IX + pJ! + fl3Z, 

(ii) in-plane side~by-side wall: 

M = P3X + /U IY + f-lzz, 

(iii) perpendicular wall: 

M = P2X + P~ + /l,zo 

(3a) 

(3b) 

(3c) 

The three components of M(x,y) in Eqo (2) have the 

FIG. 1. A plot of the function G(hf) in thefx,j~ frequency plane. 
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FIG. 2. A pair of jagged walls in a magnetic film of thickness h. Ly and a are 
the period and the amplitude of jaggedness, respectively. 

following Fourier coefficients: 

M~~~ = !IMIJn (2tTmaIL,); 

m = ± 1, n = 0, ± 1, ± 2, ... , 

M~;~ = (mI2l) IMIJn (21TmaILx ) cos ,po; 

m = ± 1, n = 0, ± 1, ± 2, ,00 , 

(4a) 

(4b) 

m = ± 1, n = 0, ± 1, ± 2, ... , (4c) 

where 

I n (x) = ~ f'" exp[ - i(nO - x sin 0) ] dO, (Sa) 
1T Jo 

is the type one Bessel function of order n. The following 
relations will be useful in this analysis: 

(5b) 

(Sc) 

00 

I J~(x) = 1. (5d) 

One can verify, with the aid ofEq. (Sd), that 

(6) 
n In 

We now investigate the demagnetizing energy for the three 
walls in Eq. (3). 

0) In the case of the in-plane, head-to-head wall, Eqs. 
0), (3a), (4), and (5b) yield 

EM = 1TIMI2L~~ 00 G (h,j(1IL x )2 + (nILy)2)J~(2;:)sin2,po 

+ i {I - G [h ~Lx-)2 + (nILy)2] }J~(2tTa)( ClILx)2 + z(nILy
)2 co:2

,po)] . 
n_ 00 Lx (lILx ) + (nILy) 

(7) 

In the absence of jaggedness a = 0 and the energy density 
can be written simply as 

The best choice for 1;0 in this case is 1;0 = 0 so that the magne
tization remains entirely in the plane of the film. Now, as a 
increases 1;() tends towards 90°. The reason is that in the 
expression for the energy of the perpendicular component 
[first summation in Eq. (7)] the term with n = 0 decreases 
with increasing a (the first zero of Jo is at a ;:::: O. 3 8L x ). The 
other terms with n #0 are also small (assuming Ly <,Lx) 
because the filter function G(hf) is small at high frequen-

I 

des. Consequently, shifting ,po towards 90· increases the per
pendicular component's demagnetizing energy only by a 
sman amount. At the same time the move towards 1;0 = 90· 
substantially reduces the energy of the in-plane components 
[second summation in Eq. (7) 1 because for n # 0 all terms in 
the summation are proportional to cos2 1;() (again assuming 
Ly <,L~). On balance, therefore, the move towards the per
pendicular seems to facilitate the formation of zigzag boun
daries in head-to-head walls. A possible remedy is the fabri
cation of films with in-plane anisotropy so that the gain in 
demagnetization is offset by anisotropy losses. 

Oi) In the case of a in-plane, side-by-side walt; Eqs. (1), 
3(b), (4), and (Sb) yield 

EM = tT1MlzL}: oc G [h ~(1ILx )2 + (nlLy )2]J~(2;~)COS2 1;9 

+ f {I - G [h ~(1ILx)2 + (nILy?] }J~(21ia)( (lILx)2 Si~2 1;0 + (n/~.lY)] . 
n~ 00 Lx (lILx ) + (nILy) 

(9) 

In the absence of jaggedness a = 0 and the energy density is 
simply written 

EM = 1l'1M12{ G(h/Lx )cos2 1;0 

+ [1 - G(h I Lx)] sin2 1;0}. (IO) 
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i 
The optimum value of </10 now depends on h I Lx. The critical 
value is h I Lx = 0.2S5 where G(h I Lx) = !. Below the criti
cal point ,po = 90° so that the magnetization is everywhere in 
plane (Neel waH). Above the critical point ,po = ° and the 
rotation of magnetization takes place outside the plane of the 
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film (Bloch wall). More accurate descriptions of the side
by-side walls including the effects of exchange and anisotro
py can be found in Ref. 2. The introduction of the zigzag 
structure does not seem to reduce the energy density in Eq. 
(9). Thus, side-by-side walls appear to be in their state of 

In the absence of jaggedness (a = 0) we have 

EM = 1TIMI2{ G(h /Lx) + [1 - G(h /L,)] cos2 ¢o}. (12) 

The best choice for ¢;o is ¢o = 90· so that the in-plane compo
nent of magnetization becomes paranel to the y axis. As a 
increases, however, <Po moves towards 0, i.e., the in-plane 
component moves away framy towards the x axis. As can be 
seen from Eq. (11) the energy of the perpendicular compo
nent goes down with increasing a. The contribution of the 
in-plane component along x is only in the n = 0 term of the 
second sum, si.nce (with Ly -<Lx) aU the other terms are 
dominated by the component along y. By reducing ¢la, then, 
we reduce the contribution of the in-plane magnetization in 
the y direction, while making a small sacrifice in terms of the 
energy of the x component. 

II. DEMAGNETIZING ENERGY IN RANDOM 
MAGNETIZATION DISTRIBUTIONS 

Consider a random magnetization distribution M(x,y) 
in a film of thickness h and dimensions Lx XLy in the limit 
when both Lx and Ly tend to infinity. Let us define the auto
correlation functions for the various components of magne
ti.zation as follows: 

Rxx(T/,t;) = (M, (xo,yo)Mx (xo + 1/,Yo + ;», 
Ryy (1],;) = (My (xn,yo)My (xo + 'I],Yo + ;), 
Rxy (r;,;) = (Mx (xo,yo)Mv (xo + T/,Yo + ;) 

+ My (xo,yo)Mx (xo + r;,yo + ;», 
R zz (1},f;) = (Mz {xo,yo)Mz (xo + 1},yo + ;». 

(13a) 

(130) 

(13c) 

( 13d) 

The symbol ( ... ) means statistical average over an ensemble 
of identical systems (films) where each member of the en
semble exhibits a particular instance of a random distribu
tion. Stationarity is assumed by indicating the dependence of 
the autocorrelation functions on the relative and not the ab
solute positions. Stationarity gives symmetry with respect to 
the origin of the 1J{; plane to the autocorrelation functions, 
but other types of symmetry may also occur under special 
conditions. 

We now calculate the statistical averages of the various 
terms in Eq. (1 a). As expected, these averages are related to 
the Fourier transforms of the preceding autocorrelation 
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minimum demagnetizing energy when they are free from 
jaggedness. 

(iii) In the case of a perpendicular waH, Eqs. (1), (3c), 
( 4 ), and (5b) yield 

(11) 

functions. For the z component of magnetization we obtain 

1 fl.x fL, 
(!M mn ·Z\2)ZLL __ Rzz<T/,f;) 

_" y L>[. Ly 

FlG. 3. Plots of Gr, (j~,J,,) and G",( [,'/y) in the frequency plane. G" is 
the same as Gyy but rotated around the vertic;ll axis by 90'. 
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where the approximate equality becomes exact in the limit 
when Lx and Lv tend to infinity. Defining the Fourier trans
form of R zz (77,;) as 

Rzz (Ix,!;,) = J r= 00 R zz (17,;) 

Xexp[ - i2rr(/xrJ + !;,;)]d1] d;, (15) 

and realizing that 1/ Lx = dfx and 1/ Ly = d!v we can write 
Eq. (14) as follows: 

(16) 

Similarly, 

<IMmn '0-1 2
) = (~~ R.uC/x.J;,) + If; ity(/,,jv) 

+ 1) Ryy (I",!;') )df: d!;,. (17) 

Consequently, in this limit oflarge Lx and L y , one can write 
the average demagnetizing energy density as 
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(EM) = 2rr I 1""00 [Gxx (lx,f~,)Rxx (Ix'!;') 

+ Gxy if",!;, }Rxy ifx,!;,) + Gyy (/".!;, )Ryy (/x'!v) 

+ Gzz (/"J;, )R zz if",J;, )jdfx d/y, (18a) 

where 

Gxx(fx,!v) = [/;/if; +f;)][l- G(hl)]' (i8b) 

GXY (Ix,!;') = [/xJ;,/(f; + f;)] [1 - G(hf)] , (18c) 

Gyy (f, ,J;,) = [/;/(f~ + f;)] [l - G(hf)], (18d) 

GzzC/x.J;,) = G(hl). (l8e) 

The functions Gxx , Gxy , and Gyy are shown in Fig. 3. 
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