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Abstract. The Lorentz force law of classical electrodynamics states that the force 𝑭𝑭 exerted by the magnetic 
induction 𝑩𝑩 on a particle of charge 𝑞𝑞 moving with velocity 𝑽𝑽 is given by 𝑭𝑭 = 𝑞𝑞𝑽𝑽 × 𝑩𝑩. Since this force is 
orthogonal to the direction of motion, the magnetic field is said to be incapable of performing mechanical 
work. Yet there is no denying that a permanent magnet can readily perform mechanical work by 
pushing/pulling on another permanent magnet — or by attracting pieces of magnetizable material such as 
scrap iron or iron filings. We explain this apparent contradiction by examining the magnetic Lorentz force 
acting on an Amperian current loop, which is the model for a magnetic dipole. We then extend the discussion 
by analyzing the Einstein-Laub model of magnetic dipoles in the presence of external magnetic fields. 

1. Introduction. The force exerted by one magnetic dipole on another is capable of performing 
mechanical work, which appears to be in violation of the Lorentz force law of classical electrodynamics. 
The discrepancy is resolved if one examines the model of a magnetic dipole as an Amperian current loop, 
which allows for the balancing of the translational kinetic energy gained (or lost) by the moving current 
loop against its rotational kinetic energy. This problem will be analyzed in some detail in Sec.2, where we 
show that the change in the loop’s rotational kinetic energy is also related to its changing magnetic dipole 
moment in accordance with Larmor’s diamagnetic susceptibility of the loop. 

We proceed to address, in Sec.3, the question of what would happen if a magnetic dipole failed to 
behave as an Amperian current loop. This brings up an alternative model of magnetism and magnetic 
dipoles, which will be treated in the context of the Einstein-Laub formulation of the classical theory. In 
Sec.4 we examine the electromagnetic (EM) energy of an immobile magnetic dipole in the presence of an 
externally-applied static magnetic field. Two approaches to EM energy, namely, the Lorentz approach 
(which considers magnetic dipoles as Amperian current loops), and the Einstein-Laub approach (which 
treats such dipoles as pairs of north-south magnetic monopoles) will be considered. Finally, in Sec.5, we 
extend the discussion of Sec.4 to the case of moving magnetic dipoles within a static magnetic field. The 
predictions of the Lorentz and Einstein-Laub formulations turn out to be in complete agreement in all the 
cases examined in Secs.4 and 5. The paper closes with a few concluding remarks in Sec.6. 

2. Interaction between two magnetic dipoles. Consider a magnetic point-dipole 𝑚𝑚0𝒛𝒛�, sitting at the 
origin of a spherical coordinate system (𝑟𝑟, 𝜃𝜃, 𝜑𝜑), as shown in Fig.1. The magnetic field of the dipole in 
the surrounding free space is1,2 
 𝑯𝑯(𝑟𝑟, 𝜃𝜃, 𝜑𝜑) = 𝑚𝑚0

4𝜋𝜋𝜇𝜇0𝑟𝑟3
(2 cos𝜃𝜃 𝒓𝒓� + sin 𝜃𝜃 𝜽𝜽�). (1) 

The reason for the free-space permeability 𝜇𝜇0 appearing in Eq.(1) is that we are using the notation in 
which the magnetic induction is defined as 𝑩𝑩 = 𝜇𝜇0𝑯𝑯 +𝑴𝑴. According to this definition, the magnetization 
𝑴𝑴 has the units of the 𝐵𝐵-field (i.e., weber/m2 or tesla in 𝑆𝑆𝑆𝑆, the international system of units), and the 
magnetic dipole moment of a small current loop of area 𝐴𝐴 carrying the current 𝐼𝐼 is 𝑚𝑚 = 𝜇𝜇0𝐼𝐼𝐼𝐼. 

Let a rigid circular ring of radius 𝑅𝑅 and negligible thickness be 
centered on the 𝑧𝑧-axis at 𝑧𝑧 = 𝑧𝑧0. The ring, which is uniformly charged 
around its circumference, has total charge 𝑞𝑞, total mass 𝓂𝓂, and rotates 
at a constant angular velocity Ω around the 𝑧𝑧-axis. The electric current 
circulating around the ring in the azimuthal direction 𝝋𝝋�  is thus given by 
Fig.1. The magnetic dipole 𝑚𝑚0𝒛𝒛� sits at the origin of the coordinate system. A 
circular ring of radius 𝑅𝑅 and negligible thickness is placed parallel to the 𝑥𝑥𝑥𝑥-
plane at 𝑧𝑧 = 𝑧𝑧0. The ring, which is uniformly charged around its circumference, 
has a total charge 𝑞𝑞, total mass 𝓂𝓂, and rotates with a constant angular velocity 
Ω around the 𝑧𝑧-axis. 
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𝐼𝐼 = 𝑞𝑞Ω (2𝜋𝜋)⁄ , the mechanical angular momentum of the ring is 𝑳𝑳 = (𝓂𝓂𝑅𝑅2Ω)𝒛𝒛�, and the magnetic dipole 
moment of the spinning ring is 𝒎𝒎1 = ½(𝜇𝜇0𝑞𝑞𝑅𝑅2Ω)𝒛𝒛� = ½(𝜇𝜇0𝑞𝑞 𝓂𝓂⁄ )𝑳𝑳. 

In the spherical coordinate system of Fig.1, the angle 𝜃𝜃 subtended by the ring at the origin is 
𝜃𝜃 = tan−1(𝑅𝑅 𝑧𝑧0⁄ ). The Lorentz force-density (i.e., force per unit length of the ring) produced by the 𝐵𝐵-
field of the dipole 𝑚𝑚0𝒛𝒛� acting on the spinning loop is readily found to be 

 𝒇𝒇1 = 𝐼𝐼𝝋𝝋� × 𝑚𝑚0(2 cos𝜃𝜃𝒓𝒓� + sin𝜃𝜃𝜽𝜽�)

4𝜋𝜋�𝑅𝑅2+ 𝑧𝑧02�
3 2⁄ = 𝐼𝐼𝑚𝑚0(2 cos𝜃𝜃𝜽𝜽� − sin𝜃𝜃𝒓𝒓�)

4𝜋𝜋�𝑅𝑅2+ 𝑧𝑧02�
3 2⁄ · (2) 

Upon integrating the above force-density around the perimeter of the ring, we find that only the 𝑧𝑧-
component of the Lorentz force survives. The net force is thus given by 

 𝐹𝐹𝑧𝑧 = 2𝜋𝜋𝜋𝜋 𝐼𝐼𝑚𝑚0(−2cos𝜃𝜃 sin𝜃𝜃 −sin𝜃𝜃 cos𝜃𝜃)

4𝜋𝜋�𝑅𝑅2+𝑧𝑧02�
3 2⁄ = − 3𝐼𝐼𝑚𝑚0𝑅𝑅 sin𝜃𝜃 cos𝜃𝜃

2�𝑅𝑅2+𝑧𝑧02�
3 2⁄ = − 3𝐼𝐼𝑚𝑚0𝑅𝑅2𝑧𝑧0

2�𝑅𝑅2+𝑧𝑧02�
5 2⁄ · (3) 

Incidentally, in the limit when 𝑅𝑅 → 0, the force 𝐹𝐹𝑧𝑧𝒛𝒛� is equivalent to (𝒎𝒎1 ∙ 𝜵𝜵)𝑯𝑯, where 𝒎𝒎1 =
𝜇𝜇0𝜋𝜋𝑅𝑅2𝐼𝐼𝒛𝒛� and 𝑯𝑯 = 𝑚𝑚0𝒛𝒛� (2𝜋𝜋𝜇𝜇0|𝑧𝑧|3)⁄  along the 𝑧𝑧-axis; see Eq.(1). The bottom line is that the dipole 𝑚𝑚0𝒛𝒛� 
exerts an attractive force 𝐹𝐹𝑧𝑧𝒛𝒛� on the ring that is centered on the 𝑧𝑧-axis at 𝑧𝑧 = 𝑧𝑧0 while carrying the 
constant current 𝐼𝐼 along 𝝋𝝋� . When the radius 𝑅𝑅 of the ring is sufficiently small, one may suppose that the 
spinning ring is a magnetic point-dipole 𝑚𝑚1𝒛𝒛�, in which case it is easy to see how the opposing poles of the 
two dipoles tend to attract each other. So long as the dipoles are pinned down at their respective locations, 
there will be no movement and, therefore, no mechanical work is performed by one dipole on the other. 
However, if the dipole at the origin remains fixed in place, but the dipole at 𝑧𝑧 = 𝑧𝑧0 is allowed to move 
along the 𝑧𝑧-axis, the force 𝐹𝐹𝑧𝑧𝒛𝒛� of Eq.(3) will perform mechanical work, which appears to contradict the 
well-known assertion that magnetic fields acting on electric charges cannot do any work. 

To resolve the contradiction, let us now assume that the ring spinning around the 𝑧𝑧-axis at 𝑧𝑧 = 𝑧𝑧0 is 
also travelling along 𝑧𝑧 at a constant velocity 𝑣𝑣𝒛𝒛�. The rotating charges are thus subjected to a new Lorentz 
force, whose linear density around the circumference of the ring is given by 

 𝒇𝒇2 = 𝑞𝑞𝑞𝑞𝒛𝒛�
2𝜋𝜋𝜋𝜋

× 𝑚𝑚0�2 cos𝜃𝜃𝒓𝒓� +sin𝜃𝜃𝜽𝜽��

4𝜋𝜋�𝑅𝑅2+𝑧𝑧02�
3 2⁄ = 3𝑞𝑞𝑞𝑞𝑚𝑚0 sin𝜃𝜃 cos𝜃𝜃

8𝜋𝜋2𝑅𝑅�𝑅𝑅2+𝑧𝑧02�
3 2⁄ 𝝋𝝋� = 3𝑞𝑞𝑞𝑞𝑚𝑚0𝑧𝑧0

8𝜋𝜋2�𝑅𝑅2+𝑧𝑧02�
5 2⁄ 𝝋𝝋� . (4) 

The force-density 𝒇𝒇2 performs mechanical work 𝑊𝑊 on the rotating charges of the ring at a rate given 
by the dot-product of 𝒇𝒇2 and the azimuthal velocity 𝑅𝑅Ω𝝋𝝋�  of the charges. The rate at which work is done 
on the entire ring is subsequently obtained by integrating around the perimeter of the ring, that is, 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ∫ (𝒇𝒇2 ∙ 𝑅𝑅Ω𝝋𝝋�)𝑅𝑅𝑅𝑅𝑅𝑅2𝜋𝜋
0 = (3𝑞𝑞𝑞𝑞𝑚𝑚0𝑧𝑧0𝑅𝑅Ω)(2𝜋𝜋𝜋𝜋)

8𝜋𝜋2�𝑅𝑅2+𝑧𝑧02�
5 2⁄ = 3𝐼𝐼𝑚𝑚0𝑅𝑅2𝑧𝑧0𝑣𝑣

2�𝑅𝑅2+𝑧𝑧02�
5 2⁄ · (5) 

A comparison of Eq.(5) with Eq.(3) reveals that the energy delivered to the current loop in 
accordance with Eq.(5) is taken away from the translational kinetic energy of the traveling loop along the 
𝑧𝑧-axis at the rate of 𝐹𝐹𝑧𝑧𝑣𝑣. [Conversely, if 𝑣𝑣 happens to be negative, the loop gains translational kinetic 
energy as it moves down toward the dipole 𝑚𝑚0𝒛𝒛�, while simultaneously losing rotational kinetic energy in 
accordance with Eq.(5).] We have thus confirmed that a magnetic field cannot perform any (net) work on 
moving charged particles — again for the simple reason that the Lorentz force of the 𝐵𝐵-field is always 
orthogonal to the direction of motion of each such charge. 

The mechanical torque (2𝜋𝜋𝑅𝑅2𝑓𝑓2)𝒛𝒛� acting on the ring is, of course, responsible for changing the ring’s 
angular momentum 𝑳𝑳 and, consequently, its dipole moment 𝒎𝒎1 = ½(𝜇𝜇0𝑞𝑞 𝓂𝓂⁄ )𝑳𝑳, at the following rate: 

 𝑑𝑑𝒎𝒎1
𝑑𝑑𝑑𝑑

= �𝜇𝜇0𝑞𝑞
2𝓂𝓂
� 𝑑𝑑𝑳𝑳
𝑑𝑑𝑑𝑑

= �𝜇𝜇0𝑞𝑞
2𝓂𝓂
� (2𝜋𝜋𝑅𝑅2𝑓𝑓2)𝒛𝒛� = 3𝜇𝜇0𝑞𝑞2𝑅𝑅2𝑚𝑚0𝑧𝑧0𝑣𝑣

8𝜋𝜋𝓂𝓂�𝑅𝑅2+𝑧𝑧02�
5 2⁄ 𝒛𝒛� = �𝜇𝜇0𝑞𝑞

2𝑅𝑅2

4𝓂𝓂
� 3𝑚𝑚0𝑧𝑧0𝑣𝑣

2𝜋𝜋�𝑅𝑅2+𝑧𝑧02�
5 2⁄ 𝒛𝒛�. (6) 
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The bracketed term on the right-hand-side of Eq.(6) is Larmor’s diamagnetic susceptibility3 
associated with the magnetic dipole 𝑚𝑚1𝒛𝒛�. For sufficiently small 𝑅𝑅, the remaining term on the right-hand-
side of Eq.(6), namely, 3𝑚𝑚0𝑣𝑣𝒛𝒛� (2𝜋𝜋𝑧𝑧04)⁄ , is the time-rate-of-change of the 𝐵𝐵-field as seen by the traveling 
point-dipole 𝑚𝑚1𝒛𝒛� while passing through 𝑧𝑧 = 𝑧𝑧0 at the constant velocity 𝑣𝑣𝒛𝒛�; see Eq.(1). It is seen that the 
dipole moment 𝑚𝑚1 does in fact change in precisely the way it is expected to change (given its diamagnetic 
susceptibility) when passing through the nonuniform magnetic field produced by the stationary dipole 
𝑚𝑚0𝒛𝒛�. The changing magnitude of the dipole moment 𝑚𝑚1𝒛𝒛� guarantees that any gain (or loss) in its 
translational kinetic energy is balanced by the concomitant loss (or gain) in the rotational kinetic energy 
of the revolving charge(s) that constitute the dipole moment 𝑚𝑚1𝒛𝒛�. 

3. Beyond the Amperian current loop model. The analysis of the preceding section applies to magnetic 
dipoles that originate in the orbital motion of electrons around atomic/molecular nuclei. It is not clear if 
spin-based magnetic dipoles would behave in similar fashion. In the Einstein-Laub formulation of EM 
force and torque,4,5 magnetic dipoles are treated as primordial sources of the EM field (along with electric 
dipoles, in addition to free electric charges and currents). The Einstein-Laub force 𝑭𝑭EL and torque 𝑻𝑻EL 
exerted by the fields 𝑬𝑬(𝒓𝒓, 𝑡𝑡) and 𝑯𝑯(𝒓𝒓, 𝑡𝑡) on a magnetic dipole 𝒎𝒎 are4-6 

 𝑭𝑭EL(𝒓𝒓, 𝑡𝑡) = (𝒎𝒎 ∙ 𝜵𝜵)𝑯𝑯 − (𝜕𝜕𝒎𝒎 𝜕𝜕𝜕𝜕⁄ ) × 𝜀𝜀0𝑬𝑬, (7a) 

 𝑻𝑻EL(𝒓𝒓, 𝑡𝑡) = 𝒓𝒓 × 𝑭𝑭EL + 𝒎𝒎 × 𝑯𝑯. (7b) 

Any changes that might occur in the dipole moment 𝒎𝒎 itself in the presence of external EM fields 
are unspecified. Moreover, with the Poynting vector defined as 𝑺𝑺(𝒓𝒓, 𝑡𝑡) = 𝑬𝑬(𝒓𝒓, 𝑡𝑡) × 𝑯𝑯(𝒓𝒓, 𝑡𝑡) in the 
Einstein-Laub formulation,5,6 the energy exchange rate between the EM field and a magnetic dipole 𝒎𝒎 is 
given by 𝑯𝑯 ∙ (𝜕𝜕𝒎𝒎 𝜕𝜕𝜕𝜕⁄ ). A point-dipole such as 𝑚𝑚1𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝛿𝛿(𝑧𝑧 − 𝑣𝑣𝑣𝑣)𝒛𝒛�, whose magnitude 𝑚𝑚1 remains 
constant while traveling along the 𝑧𝑧-axis, will have the following energy-exchange-rate with the magnetic 
field 𝑯𝑯(𝒓𝒓) of Eq.(1): 

 ∭ 𝑯𝑯 ∙ (𝜕𝜕𝒎𝒎 𝜕𝜕𝜕𝜕⁄ )𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∞
−∞ = −� 𝑚𝑚0𝑚𝑚1𝑣𝑣

2𝜋𝜋𝜇𝜇0𝑧𝑧3
𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝛿𝛿′(𝑧𝑧 − 𝑣𝑣𝑣𝑣)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

∞

−∞
= − 3𝑚𝑚0𝑚𝑚1𝑣𝑣

2𝜋𝜋𝜇𝜇0𝑧𝑧04
. (8) 

Equation (8) is in complete accord with Eq.(3), as it shows that translational kinetic energy is what 
the 𝐻𝐻-field delivers to (or takes away from) the moving dipole 𝑚𝑚1𝒛𝒛�. Unless the changes of 𝑚𝑚1 with 
position along the 𝑧𝑧-axis are independently specified, the Einstein-Laub formalism cannot guarantee that 
the net work done by the 𝐻𝐻-field on the permanent dipole 𝑚𝑚1𝒛𝒛� would be zero. 

In contrast to the Einstein-Laub formalism, magnetic dipoles in the Lorentz formulation are treated 
as Amperian current loops,1-3 with the current-density associated with an arbitrary spatio-temporal 
distribution of magnetization 𝑴𝑴(𝒓𝒓, 𝑡𝑡) being 𝑱𝑱bound = 𝜇𝜇0−1𝜵𝜵 ×𝑴𝑴.1,2,5 These current loops must then act as 
ordinary current loops in the presence of external EM fields. Given that, in their internal structure, 
magnetic dipoles (and also electric dipoles) do not abide by the rules of classical physics, it is by no 
means obvious if realistic (i.e., physical) dipoles are structurally capable of responding “properly” to 
classical EM fields. In other words, in the interaction between a magnetic field and magnetic dipoles, it is 
not a priori clear if the quantized spin and orbital angular momenta of realistic dipoles would allow the 
necessary adjustment of the magnetic dipole moment in order to ensure that no net mechanical work is 
performed by the applied magnetic field. 

4. Energy considerations for a stationary dipole. With reference to Fig.2, let a small, uniformly-
magnetized spherical particle of radius 𝑅𝑅 have a magnetization 𝑴𝑴(𝒓𝒓, 𝑡𝑡) = 𝑚𝑚(𝑡𝑡)𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝛿𝛿(𝑧𝑧)𝒛𝒛�, where the 
temporal variations of 𝑚𝑚(𝑡𝑡) are assumed to be fairly slow. The volume occupied by the spherical dipole is 
𝑉𝑉0 = 4𝜋𝜋𝑅𝑅3 3⁄ . Here we are using the 𝛿𝛿-function notation to represent a small spherical volume centered at 
the origin of coordinates. In what follows, depending on the mathematical needs of the situation, we shall 
go back and forth between this 𝛿𝛿-function notation and the small-sphere representation of 𝑴𝑴(𝒓𝒓, 𝑡𝑡). 



4 
 

In the Lorentz formalism and in the absence of external fields, the time-rate-of-change of the stored 
EM energy inside the dipole, where 𝑩𝑩(𝑡𝑡) = ⅔𝑴𝑴(𝑡𝑡), is given by 

 𝑑𝑑ℰstored
𝑑𝑑𝑑𝑑

= 𝑑𝑑
𝑑𝑑𝑑𝑑
�½𝜇𝜇0−1 ∫ 𝑩𝑩2(𝑡𝑡)𝑑𝑑𝒓𝒓

sphere
� = 4

9
𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝑚𝑚′(𝑡𝑡). (9) 

The time-varying magnetization, being equivalent to a time-varying 𝐵𝐵-field inside the sphere, gives 
rise to an 𝐸𝐸-field circulating around the 𝑧𝑧-axis in accordance with Maxwell’s equation 𝜵𝜵 × 𝑬𝑬 = −𝜕𝜕𝑡𝑡𝑩𝑩. At 
the surface of the sphere, around a circle of radius 𝑅𝑅 sin𝜃𝜃, we have ∮𝑬𝑬 ∙ 𝑑𝑑𝓵𝓵 = −⅔𝑀𝑀′(𝑡𝑡)𝜋𝜋𝑅𝑅2 sin2 𝜃𝜃. This 
𝐸𝐸-field performs mechanical work on the magnet’s bound electric current-density 𝑱𝑱bound

(𝑒𝑒) = 𝜇𝜇0−1𝜵𝜵 × 𝑴𝑴(𝑡𝑡) 
and exchanges energy with the dipole at the rate of ∮(𝑬𝑬 ∙ 𝑱𝑱)𝑑𝑑ℓ. Given that the product of loop current and 
loop area integrated over 𝜃𝜃 equals 𝜇𝜇0−1𝑚𝑚(𝑡𝑡), we see that the time-rate-of-change of the dipole’s total 
internal energy is  

 𝑑𝑑ℰtotal
𝑑𝑑𝑑𝑑

= 4
9
𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝑚𝑚′(𝑡𝑡) − 2

3
𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝑚𝑚′(𝑡𝑡) = − 2

9
𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝑚𝑚′(𝑡𝑡). (10) 

It is thus seen that, when 𝒎𝒎(𝑡𝑡) is on the rise, electromagnetic (EM) 
energy leaves the interior of the dipole and enters the surrounding space in 
the form of EM fields. Conversely, when 𝒎𝒎(𝑡𝑡) is in decline, the external 
field energy leaves the surrounding space and enters the dipole’s spherical 
volume. 

Fig.2. A uniformly magnetized sphere of radius 𝑅𝑅, volume 𝑉𝑉0, and magnetic dipole 
moment 𝑚𝑚(𝑡𝑡)𝒛𝒛�, moves along the 𝑧𝑧-axis at constant velocity 𝑣𝑣𝒛𝒛�. The internal 𝐻𝐻-
field of the dipole is −⅓𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝒛𝒛�, while its internal 𝐵𝐵-field is ⅔𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝒛𝒛�. 
The externally applied magnetic field 𝑯𝑯(ext)(𝒓𝒓) does not vary with time. 

Let us now switch to the Einstein-Laub formalism and confirm that the overall rate of flow of energy 
in or out of the sphere is the same in the two formulations. Here 𝑯𝑯(𝑡𝑡) = −⅓𝜇𝜇0−1𝑴𝑴(𝑡𝑡) inside the sphere, 
and the time-rate-of-change of the energy stored within the dipole is given by 

 𝑑𝑑ℰstored
𝑑𝑑𝑑𝑑

= 𝑑𝑑
𝑑𝑑𝑑𝑑
�½𝜇𝜇0 ∫ 𝑯𝑯2(𝑡𝑡)𝑑𝑑𝒓𝒓

sphere
� = 1

9
𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝑚𝑚′(𝑡𝑡). (11) 

In this case, the 𝐸𝐸-field plays no role, but the exchange rate of energy-density between the field and 
the dipole is given by 𝑯𝑯(𝒓𝒓) ∙ 𝜕𝜕𝑡𝑡𝑴𝑴(𝒓𝒓, 𝑡𝑡) = −⅓𝜇𝜇0−1𝑴𝑴(𝒓𝒓, 𝑡𝑡) ∙ 𝜕𝜕𝑡𝑡𝑴𝑴(𝒓𝒓, 𝑡𝑡), which must then be integrated over 
the volume of the sphere. Thus, the time-rate-of-change of total (internal) energy is 

 𝑑𝑑ℰtotal
𝑑𝑑𝑑𝑑

= 1
9
𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝑚𝑚′(𝑡𝑡) − 1

3
𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝑚𝑚′(𝑡𝑡) = − 2

9
𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝑚𝑚′(𝑡𝑡). (12) 

Note that Eqs.(10) and (12) predict identical rates for the overall flow of energy into or out of the 
dipole, despite the differing physical mechanisms behind the two formulations. 

If the dipole happens to be immersed in an externally applied static magnetic field 𝑯𝑯(ext)(𝒓𝒓), the 
results will be essentially the same. In this case, the Lorentz formulation predicts that 

 𝑑𝑑ℰstored
𝑑𝑑𝑑𝑑

= 𝑑𝑑
𝑑𝑑𝑑𝑑
�½𝜇𝜇0−1 ∫ �𝜇𝜇0𝑯𝑯(ext)(𝒓𝒓) +⅔𝑴𝑴(𝒓𝒓, 𝑡𝑡)�

2
𝑑𝑑𝒓𝒓

sphere 
� 

 = 2
3
𝑚𝑚′(𝑡𝑡)𝐻𝐻𝑧𝑧

(ext)(0) + 4
9
𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝑚𝑚′(𝑡𝑡). (13) 

The external 𝐻𝐻-field will have no effect on the induced 𝐸𝐸-field and, therefore, the sole contribution 
of 𝑯𝑯(ext) to the overall time-rate-of-change of energy will be the addition of the first term on the right-
hand side of Eq.(13), namely, ⅔𝑚𝑚′(𝑡𝑡)𝐻𝐻𝑧𝑧

(ext)(0), to 𝑑𝑑ℰtotal 𝑑𝑑𝑑𝑑⁄  found in Eq.(10). 

dr stands for volume 
element dxdydz. 

x 

y 

z 

𝑚𝑚𝒛𝒛� 

𝑣𝑣𝒛𝒛� 

R 

𝑯𝑯(ext)(𝒓𝒓) 
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In contrast, in the Einstein-Laub formalism, when 𝑯𝑯(ext) (𝒓𝒓) is present in the system, the time-rate-
of-change of the energy stored inside the sphere will be 

 𝑑𝑑ℰstored
𝑑𝑑𝑑𝑑

= 𝑑𝑑
𝑑𝑑𝑑𝑑
�½𝜇𝜇0 ∫ �𝑯𝑯(ext)(𝒓𝒓) −⅓𝜇𝜇0−1𝑴𝑴(𝒓𝒓, 𝑡𝑡)�

2
𝑑𝑑𝒓𝒓

sphere
� 

 = −1
3
𝑚𝑚′(𝑡𝑡)𝐻𝐻𝑧𝑧

(ext)(0) + 1
9
𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝑚𝑚′(𝑡𝑡). (14) 

This time, however, the rate of energy exchange between the 𝐻𝐻-field and the dipole becomes 

 ∫ 𝑯𝑯(𝒓𝒓, 𝑡𝑡) ∙ 𝜕𝜕𝑡𝑡𝑴𝑴(𝒓𝒓, 𝑡𝑡)𝑑𝑑𝒓𝒓
sphere

= ∫ �𝑯𝑯(ext)(𝒓𝒓) −⅓𝜇𝜇0−1𝑴𝑴(𝒓𝒓, 𝑡𝑡)� ∙ 𝜕𝜕𝑡𝑡𝑴𝑴(𝒓𝒓, 𝑡𝑡)𝑑𝑑𝒓𝒓
sphere

 

 = 𝑚𝑚′(𝑡𝑡)𝐻𝐻𝑧𝑧
(ext)(0) −⅓𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝑚𝑚′(𝑡𝑡). (15) 

Upon adding Eq.(14) to Eq.(15), we find 

 𝑑𝑑ℰtotal
𝑑𝑑𝑑𝑑

= 2
3
𝑚𝑚′(𝑡𝑡)𝐻𝐻𝑧𝑧

(ext)(0) − 2
9
𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝑚𝑚′(𝑡𝑡). (16) 

It is seen, once again, that the sole contribution of the external field to 𝑑𝑑ℰtotal 𝑑𝑑𝑑𝑑⁄  is the addition of 
the term ⅔𝑚𝑚′(𝑡𝑡)𝐻𝐻𝑧𝑧

(ext)(0) to the result obtained previously in Eq.(12). We conclude that the overall rate 
of EM energy flow into or out of a stationary dipole in a static magnetic field is independent of whether 
one works in the formalism of Lorentz or that of Einstein and Laub. 

5. Energy considerations in the case of a moving dipole. A small spherical dipole of radius 𝑅𝑅 and 
volume 𝑉𝑉0, immersed in the static external field 𝑯𝑯(ext)(𝒓𝒓) and moving slowly with velocity 𝑣𝑣𝒛𝒛� along the 
𝑧𝑧-axis, can be represented by its magnetization 𝑴𝑴(𝒓𝒓, 𝑡𝑡) = 𝑚𝑚(𝑡𝑡)𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝛿𝛿(𝑧𝑧 − 𝑣𝑣𝑣𝑣)𝒛𝒛�; see Fig.2. In what 
follows, we will evaluate the integrals over a slightly expanded sphere of radius 𝑅𝑅+ (denoted by sphere+) 
in order to accommodate slight displacements of the dipole during an infinitesimal time interval ∆𝑡𝑡. 

In the Lorentz formalism, the time-rate-of-change of the EM energy stored inside the (slightly 
enlarged) sphere is written 

 𝑑𝑑ℰstored
𝑑𝑑𝑑𝑑

= 𝑑𝑑
𝑑𝑑𝑑𝑑
�½𝜇𝜇0−1 � [𝜇𝜇0𝑯𝑯(ext)(𝒓𝒓) + ⅔𝑴𝑴(𝒓𝒓, 𝑡𝑡)]2𝑑𝑑𝒓𝒓

sphere+
� 

 = 2
3
� 𝐻𝐻𝑧𝑧

(ext)(𝒓𝒓)[𝑚𝑚′(𝑡𝑡)𝛿𝛿(𝑧𝑧 − 𝑣𝑣𝑣𝑣) − 𝑣𝑣𝑣𝑣(𝑡𝑡)𝛿𝛿′(𝑧𝑧 − 𝑣𝑣𝑣𝑣)]𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝑑𝑑𝒓𝒓
sphere+

+ 4
9
𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝑚𝑚′(𝑡𝑡) 

 = 2
3
𝑚𝑚′(𝑡𝑡)𝐻𝐻𝑧𝑧

(ext)(𝑣𝑣𝑣𝑣) + 2
3
𝑣𝑣𝑣𝑣(𝑡𝑡)𝐻𝐻𝑧𝑧′

(ext)(𝑣𝑣𝑣𝑣) + 4
9
𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝑚𝑚′(𝑡𝑡). (17) 

As for the contribution of the 𝐸𝐸-field induced by a time-varying 𝑚𝑚(𝑡𝑡), the exchanged energy will 
continue to have a time-rate given (to a good approximation) by −⅔𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝑚𝑚′(𝑡𝑡); see the 
paragraph immediately after Eq.(9). The time-rate-of-change of total energy within the dipole will thus be 

 𝑑𝑑ℰtotal
𝑑𝑑𝑑𝑑

= 2
3
𝑚𝑚′(𝑡𝑡)𝐻𝐻𝑧𝑧

(ext)(𝑣𝑣𝑣𝑣) + 2
3
𝑣𝑣𝑣𝑣(𝑡𝑡)𝐻𝐻𝑧𝑧′

(ext)(𝑣𝑣𝑣𝑣) − 2
9
𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝑚𝑚′(𝑡𝑡). (18) 

In contrast, in the Einstein-Laub formulation, we will have 

 𝑑𝑑ℰstored
𝑑𝑑𝑑𝑑

= 𝑑𝑑
𝑑𝑑𝑑𝑑
�½𝜇𝜇0 � [𝑯𝑯(ext)(𝒓𝒓) −⅓𝜇𝜇0−1𝑴𝑴(𝒓𝒓, 𝑡𝑡)]2𝑑𝑑𝒓𝒓

sphere+
� 

 = −1
3
� 𝐻𝐻𝑧𝑧

(ext)(𝒓𝒓)[𝑚𝑚′(𝑡𝑡)𝛿𝛿(𝑧𝑧 − 𝑣𝑣𝑣𝑣) − 𝑣𝑣𝑣𝑣(𝑡𝑡)𝛿𝛿′(𝑧𝑧 − 𝑣𝑣𝑣𝑣)]𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝑑𝑑𝒓𝒓
sphere+

+ 1
9
𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝑚𝑚′(𝑡𝑡) 

 = −1
3
𝑚𝑚′(𝑡𝑡)𝐻𝐻𝑧𝑧

(ext)(𝑣𝑣𝑣𝑣) − 1
3
𝑣𝑣𝑣𝑣(𝑡𝑡)𝐻𝐻𝑧𝑧′

(ext)(𝑣𝑣𝑣𝑣) + 1
9
𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝑚𝑚′(𝑡𝑡). (19) 
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As for the exchange rate of EM energy between the field and the dipole, we write 

 ∫ 𝑯𝑯(𝒓𝒓, 𝑡𝑡) ∙ 𝜕𝜕𝑡𝑡𝑴𝑴(𝒓𝒓, 𝑡𝑡)𝑑𝑑𝒓𝒓
sphere+

 

 = � [𝐻𝐻𝑧𝑧
(ext)(𝒓𝒓) −⅓𝜇𝜇0−1𝑀𝑀(𝒓𝒓, 𝑡𝑡)][𝑚𝑚′(𝑡𝑡)𝛿𝛿(𝑧𝑧 − 𝑣𝑣𝑣𝑣) − 𝑣𝑣𝑣𝑣(𝑡𝑡)𝛿𝛿′(𝑧𝑧 − 𝑣𝑣𝑣𝑣)]𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦)𝑑𝑑𝒓𝒓

sphere+
 

 = 𝑚𝑚′(𝑡𝑡)𝐻𝐻𝑧𝑧
(ext)(𝑣𝑣𝑣𝑣) + 𝑣𝑣𝑣𝑣(𝑡𝑡)𝐻𝐻𝑧𝑧′

(ext)(𝑣𝑣𝑣𝑣) −⅓𝜇𝜇0−1𝑉𝑉0−1𝑚𝑚(𝑡𝑡)𝑚𝑚′(𝑡𝑡) −⅓𝜇𝜇0−1𝑣𝑣𝑣𝑣(𝑡𝑡)𝜕𝜕𝑧𝑧𝑀𝑀(𝒓𝒓, 𝑡𝑡). (20) 

Thus the sum of Eqs.(19) and (20) agrees with the result obtained in the Lorentz formalism, Eq.(18), 
except for the last term on the right-hand side of Eq.(20), which appears to have no Lorentz counterpart. 
In fact, this last term is a mathematical artifact, as it represents the self-action of a fixed (i.e., time-
invariant) dipole moving at constant velocity in free space, which must vanish. This last term also needs 
to be corrected, because the 𝐻𝐻-field of the dipole immediately outside its north and south poles needs to 
be included in the equation. The discontinuity of the spherical dipole’s 𝐻𝐻-field at the sphere’s surface 
requires that the self 𝐻𝐻-field at the surface be replaced by its average value across the discontinuity. The 
contributions of the last term in Eq.(20) to the integral, which are localized at the upper and lower 
hemispherical surfaces, thus cancel out. 

As was the case in Sec.4 with regard to a stationary dipole, we conclude that the overall rate of EM 
energy flow into or out of a moving dipole in the presence of a static magnetic field does not depend on 
whether one works in the formalism of Lorentz or that of Einstein and Laub. 

6. Concluding remarks. This paper started by asking the question: Why do magnets appear to perform 
mechanical work by pushing or pulling on other magnets (and also by attracting iron filings or pieces of 
scrap iron) when the Lorentz force law explicitly forbids such work? We argued that the answer depends 
on the model that one uses to represent magnetic dipoles. In the case of the Amperian current-loop model, 
the diamagnetic susceptibility of the dipole in the presence of an external magnetic field ensures that 
internal work (performed to speed up or slow down the current of the loop itself) cancels out the external 
work that is performed when the dipole is pushed or pulled by the external field. In the case of dipole as a 
north-south pair of adjacent magnetic monopoles (i.e., the Einstein-Laub model), the external work by the 
applied field is the same as that performed on an equivalent Amperian current loop. However, without 
additional information about the changes (if any) induced in the paired monopole type of dipole upon 
exposure to the external field, it is not possible to decide if the external work performed on the dipole is 
indeed cancelled by any internal work. 

Both the Amperian current-loop model (in the context of what we called the Lorentz electro-
dynamics) and the model in which an adjacent pair of north-south monopoles comprise a magnetic dipole 
(i.e., in the Einstein-Laub formulation) can handle static as well as dynamic magnetic dipoles without 
violating Maxwell’s equations or compromising the energy-momentum conservation laws; see Secs.4 and 
5. The question remains as to which model can more accurately predict all the experimental observations. 

Acknowledgment. The author is grateful to Ewan Wright and David Griffiths for commenting on an early version 
of the manuscript. 
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