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Abstract. Electromagnetic waves carry energy as well as linear and angular momenta. 
Interactions between light and material media typically involve the exchange of all three 
entities. In all such interactions energy and momentum (both linear and angular) are conserved. 
Johannes Kepler seems to have been the first person to notice that the pressure of sunlight is 
responsible for the tails of the comets pointing away from the Sun. Modern applications of 
radiation pressure and photon momentum include solar sails, optical tweezers for optical 
trapping and micro-manipulation, and optically-driven micro-motors and actuators. This paper 
briefly describes certain fundamental aspects underlying the mechanical properties of light, and 
examines several interesting phenomena involving the linear and angular momenta of photons. 

Linear momentum of the electromagnetic field. It is well known that electromagnetic (EM) 
fields carry momentum as well as energy. Johannes Kepler (1571-1630) appears to have been the 
first to notice that a comet’s tail always points away from the Sun, a phenomenon he attributed to 
the pressure of the sunlight on particles that evaporate from the comet’s surface; see Fig.1. 

Perhaps the simplest way to 
deduce the magnitude of the EM field 
momentum from first principles is by 
means of the Einstein box thought 
experiment. Shown in Fig.2 is an 
empty box of length 𝐿 and mass 𝑀, 
placed on a frictionless rail, and free to 
move forward or backward. At some 
point in time, a blob of material 
attached to the left wall emits a short 
EM pulse of energy ℰ and momentum 
𝒑, which remains collimated as it 
travels the length of the box and gets 
absorbed by another blob attached to the right-hand wall. The recoil velocity of the box is thus 
−𝒑 𝑀⁄ , the time of flight is 𝐿 𝑐⁄ , and the box displacement along the rail is −(𝑝 𝑀⁄ )(𝐿 𝑐⁄ ). 

Associating a mass 𝑚 = ℰ/𝑐2 with the EM pulse and assuming that 𝑀 ≫ 𝑚, it is easy to see 
that the displacement of the center-of-mass of the system must be proportional to (ℰ 𝑐2⁄ )𝐿 −
𝑀(𝑝/𝑀)(𝐿/𝑐). In the absence of external forces acting on the box, however, its center-of-mass 
is not expected to move. Setting the net displacement in 
the above expression equal to zero, we find that 𝑝 = ℰ/𝑐. 
Thus, in free space, a light pulse of energy ℰ carries a 
momentum 𝑝 = ℰ/𝑐 along its direction of propagation. 
This result, which is independent of the particular shape of 
the pulse as a function of time, is accurate provided that 
the amplitude and phase profiles of the EM wave are 
smooth and uniform over a large cross-sectional area, thus 
ensuring that the pulse remains collimated as it traverses 
the length of the box. 
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Fig.2. Einstein box gedanken experiment. 
  

Comet West (1976) 

Fig.1. Johannes Kepler suggested that the comet tails always point 
away from the Sun because of the pressure exerted by the sunlight 
on particles that evaporate from the comet. 
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Electromagnetic fields in free space are defined by their electric field 𝑬(𝒓, 𝑡) and magnetic 
field 𝑯(𝒓, 𝑡), where (𝒓, 𝑡) represents the space-time coordinates. The rate of flow of energy (per 
unit area per unit time) is then given by the Poynting vector 𝑺 = 𝑬 × 𝑯. In terms of the Poynting 
vector, one can readily show that the momentum-density of the EM fields in the Einstein box 
thought experiment is given by 𝑺(𝒓, 𝑡)/𝑐2. To see this, assume a cross-sectional area 𝐴 for the 
pulse, and note that the entire pulse moves at constant velocity 𝑐 from left to right. Choose an 
arbitrary cross-section of the pulse (perpendicular to its propagation direction), and observe that 
the EM energy passing through this cross-section during a short time interval ∆𝑡 is given by 
∆ℰ = 𝑆(𝒓, 𝑡)𝐴∆𝑡. This energy, which proceeds to occupy the infinitesimal volume ∆𝑣 = 𝐴𝑐∆𝑡 to 
the right of the chosen cross-section, yields an energy density ∆ℰ/∆𝑣 =  𝑆(𝒓, 𝑡)/𝑐 at point 𝒓 at 
time 𝑡 and, consequently, a momentum density ∆𝓹/∆𝑣 = 𝑺(𝒓, 𝑡)/𝑐2 at that location. 

A straightforward application 
of radiation pressure is found in 
the concept of solar sails; see 
Fig.3. At 1.0 astronomical unit 
(i.e., the Sun-Earth distance), 
sunlight provides ~1.4 kw/m2 of 
EM power density. Dividing this 
by the speed of light 𝑐 and 
multiplying by 2 (to account for 
momentum reversal upon 
reflection from the sail) yields a 
pressure of ~9.4 µN/m2. Over a sufficiently long period of time, the continuous force of 
sunlight exerted on a large-area solar sail can propel a small spacecraft to speeds comparable to 
or greater than those achievable by conventional rockets.   

Optical tweezers. The first optical traps were built by Arthur Ashkin at AT&T Bell laboratories 
in the 1970s. "Levitation traps" used the upward-pointing radiation pressure to balance the 
downward pull of gravity, whereas "two-beam traps" relied on counter-propagating beams to trap 
particles. Then, in 1986, Ashkin and colleagues realized that 
the gradient force alone would be sufficient to trap small 
particles. They used a single, tightly-focused laser beam to 
trap a transparent particle in three dimensions. The principle 
of single-beam trapping is shown in Fig.4. A small spherical 
dielectric bead of refractive index 𝑛bead is immersed in 
some liquid of refractive index 𝑛liquid. A laser beam is 
focused from above into the glass bead, with the focal point 
placed slightly above the center of the sphere. (Only two of 
the incident rays are shown, but the remaining rays behave 
essentially in the same way.) The bending of the rays by the 
glass bead causes them to exit with a smaller deviation from 
the optical axis. The projection of the exiting rays’ momenta 
on the optical axis is thus greater than that of the incident 
rays. Stated differently, optical momentum along the z-axis increases upon transmission through 
the bead. In the process, this change of optical momentum is transferred as a lift force to the 
glass bead, helping to support it against the downward pull of gravity. Additionally, it is not 

(a) (b) 

Fig.3. (a) Artist’s conception of a small solar-sail-driven spacecraft traveling 
away from the sun outside the Earth’s atmosphere. (b) A 10-meter solar sail sits 
fully deployed in a vacuum chamber at NASA's Langley Research Center. 
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Fig.4. Single-beam optical trap. 
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difficult to show that, if the bead is laterally displaced from equilibrium, the resulting gradient 
force will return it to its original position; in other words, the equilibrium is a stable one. 

Electromagnetic spin and orbital angular momenta. It was mentioned earlier that the linear 
momentum-density (i.e., momentum per unit volume) of an EM field is 𝓹(𝒓, 𝑡) = 𝑺(𝒓, 𝑡)/𝑐2, 
where S is the Poynting vector and c is the speed of light in vacuum. The angular momentum 
density with respect to the origin of coordinates is thus given by 𝓳(𝒓, 𝑡) = 𝒓 × 𝑺(𝒓, 𝑡)/𝑐2. A 
bullet of light having a finite duration and occupying a finite volume of space will carry, at any 
given time, a certain amount of linear and angular momenta, which amounts can be determined 
by integrating the corresponding momentum densities over the region of space occupied by the 
light bullet at any given instant of time. In the absence of interactions with material media (i.e., 
when the light bullet resides in free space), one can show, using Maxwell’s equations, that the 
total linear momentum and also the total angular momentum of a given bullet remain constant in 
time, that is, the linear and angular momenta of the bullet are conserved. If the light enters a 
region of space where material media reside, it will exert forces and torques on various parts of 
these media in accordance with the Lorentz force law. Such exchanges between fields and 
material media cause the EM momenta (linear as well as angular) to vary in time. These 
variations, however, are always accompanied by corresponding variations in the linear and 
angular momenta of the material media (i.e., mechanical momenta), in such a way as to conserve 
the total momentum of the system of fields-plus-media, be it linear or angular, at all times. 

The angular momentum of a light pulse (or bullet) in free space could arise as a trivial 
consequence of its center-of-mass trajectory (i.e., a straight-line along the linear momentum of 
the pulse) not going through the chosen reference point. Selecting a reference point on the 
center-of-mass trajectory then eliminates this trivial (extrinsic) contribution. The remaining 
contributions to angular momentum can be divided into two categories: spin and orbital angular 
momenta. In general, spin has to do with the degree of circular polarization of the light pulse, 
whereas orbital angular momentum arises from spatial non-uniformities of amplitude and phase 
that render the beam asymmetric around its propagation axis. Vorticity, which is associated with 
a continuous increase or decrease of phase around closed loops in the beam’s cross-sectional 
plane, is a particularly interesting (and useful) source of orbital angular momentum. 

A circularly-polarized light pulse of energy ℰ propagating along the z-axis carries a spin 
angular momentum 𝓢𝓢 = ±(ℰ/𝜔𝜔)𝒛𝒛�. The ± signs indicate the dependence of the direction of 𝓢𝓢 on 
the handedness of circular polarization (i.e., right or left). Such a light pulse, upon passing 
through a half-wave plate, will have its sense of polarization and, consequently, its direction of 
spin angular momentum (SAM) reversed. Conservation of angular momentum then requires the 
transfer of 2𝓢𝓢 units of angular momentum to the half-wave plate, as shown in Fig.5. The passage 
of the light pulse thus sets the wave-plate spinning around the z-axis, a phenomenon that has 
been exploited in optically-driven micro-machines. 

Fig. 5. A circularly-polarized light 
pulse of energy ℰ and frequency 𝜔𝜔 
carries a spin angular momentum 
𝓢𝓢 = ±(ℰ/𝜔𝜔)𝒛𝒛�. Upon transmission 
through a half-wave plate, the 
change in the optical angular 
momentum (2𝓢𝓢) is transferred to 
the wave-plate, thereby setting the 
plate spinning around the z-axis. 

z 

𝓢𝓢 = (ℰ/𝜔𝜔)𝒛𝒛� 
λ /2-plate 

(transparent birefringent crystal) 

𝓢𝓢 = −(ℰ/𝜔𝜔)𝒛𝒛� 
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When a collimated beam of light passes through a transparent spiral ramp, as depicted in 
Fig.6, the emergent beam acquires optical vorticity, which carries orbital angular momentum 
(OAM). Once again, conservation of angular momentum requires the transfer of an equal but 
opposite angular momentum to the spiral ramp. Both SAM and OAM may be used to drive 
micro-machines. While the SAM associated with a single photon (ℰ = ℏ𝜔𝜔) can only have a 
magnitude of ±ℏ (i.e., the reduced Planck’s constant), the magnitude of OAM could be any 
integer multiple of ℏ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6. (a) A transparent spiral ramp endows an incident beam with phase vorticity, which carries a 
certain amount of orbital angular momentum. (b) When the beam incident on the spiral ramp happens 
to be circularly polarized, the transmitted beam, a circularly-polarized optical vortex, carries both spin 
and orbital angular momenta. A small absorbing particle, placed in the path of such a beam, will spin 
on its own axis while, at the same time, travelling in a circle around the axis z of the spiral ramp. 

The Balazs thought experiment. The arguments of the preceding sections do not shed any light 
on the momentum of EM waves inside material media. However, a different thought experiment, 
due to N. L. Balazs and dating back to 1953, reveals that the EM momentum-density within a 
transparent material must also be 𝓹(𝒓, 𝑡) = 𝑺(𝒓, 𝑡) 𝑐2⁄ = 𝑬(𝒓, 𝑡) × 𝑯(𝒓, 𝑡)/𝑐2. This particular 
expression is known as the Abraham momentum-density of EM waves inside material media. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7. The thought experiment of Balazs involves the propagation of a light pulse of energy ℰ 
through a transparent rod of length 𝐿 and mass 𝑀. The rod can move on a frictionless rail along the 
x-axis. Since the group velocity 𝑉𝑔 = 𝑐 𝑛𝑔⁄  of the pulse inside the rod is less than 𝑐, the emergent 
pulse is somewhat behind the location it would have reached had it travelled in vacuum all along. 

With reference to Fig.7, consider a transparent dielectric (e.g., glass) rod of length 𝐿, 
refractive index 𝑛, and large mass 𝑀. Let a short light pulse enter the rod from the left and exit 
from the right, without losses due to absorption, scattering, or reflections at the entrance and exit 
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facets. Balazs suggested three different schemes for avoiding reflection at the facet, but, for our 
purposes, it suffices to assume the existence of perfect anti-reflection coatings on these facets. 

When the pulse emerges from the rod it will be delayed by the reduced speed of light within 
the glass. In other words, had the pulse travelled parallel to its current path but outside the rod, it 
would have been ahead a distance of (𝑛 − 1)𝐿 compared to where it will be upon emerging from 
the rod. Since there are no external forces acting on the system of rod plus the light pulse, the 
center-of-mass of the system should be in the same location irrespective of whether the pulse 
went through the rod or followed a parallel path outside the rod. Let the energy of the light pulse 
in vacuum be ℰ, which corresponds to a mass of ℰ/𝑐2. The delay has caused a leftward shift of 
the product of mass and displacement by (𝑛 − 1)𝐿ℰ/𝑐2. This must be compensated by a 
rightward shift of the rod itself. Let the light pulse have EM momentum 𝑝 while inside the rod. 
Considering that the momentum of the pulse before entering the rod is ℰ/𝑐, the rod must have 
acquired a net momentum of (ℰ 𝑐⁄ ) − 𝑝 while the pulse travelled inside. Its net mass times 
forward displacement, therefore, must be [(ℰ 𝑐⁄ ) − 𝑝]𝑛𝐿/𝑐. Equating the rightward and leftward 
mass × displacement yields 𝑝 = ℰ (𝑛𝑐)⁄  for the EM momentum of the pulse inside the rod. In 
particular, the EM momentum of a single photon inside a transparent dielectric is 𝑝 = ℏ𝜔𝜔/(𝑛𝑐). 
This argument not only assigns the Abraham value to the EM momentum of the light pulse, but 
also indicates that the refractive index appearing in the Abraham expression for photon 
momentum is the group index (as opposed to the phase index) of the transparent medium. 

Photon momentum deduced from the Fresnel reflection coefficient. A simple argument 
yields a formula for the total photon momentum (i.e., electromagnetic plus mechanical) inside a 
transparent dielectric. Consider a glass slab of refractive index 𝑛 = 1.5 surrounded by vacuum, 
as shown in Fig.8. The Fresnel reflection coefficient 
at the entrance facet of the slab being 𝑟 =
(1 − 𝑛) (1 + 𝑛)⁄ = −0.2, a total of |𝑟|2 = 4% of all 
incident photons bounce back from the interface. 
Momentum conservation dictates that a reflected 
photon must transfer a momentum of 2ℏ𝜔𝜔/𝑐 to the 
slab, while a transmitted photon must maintain its 
vacuum momentum of ℏ𝜔𝜔/𝑐. Assuming the incident 
light pulse contains a total of 100 photons, the total 
momentum of the photons entering the slab plus that 
of the slab itself must be (96 + 4 × 2)ℏ𝜔𝜔/𝑐 =
104ℏ𝜔𝜔/𝑐. The momentum associated with individual photons that have entered the slab is then 
given by (104/96)ℏ𝜔𝜔/𝑐 = 1.0833ℏ𝜔𝜔/𝑐 = ½(𝑛 + 𝑛−1)ℏ𝜔𝜔/𝑐. (This argument holds for any 
value of 𝑛 and any number of photons contained in the incident light pulse, provided, of course, 
that the number of incident photons is sufficiently large to justify statistical averaging.) Recalling 
that the Balazs thought experiment associates the Abraham momentum 𝑝 = ℏ𝜔𝜔/(𝑛𝑐) with the 
EM component of the photon momentum, the additional contribution to photon momentum in 
the preceding expression must be mechanical. (A similar argument applied to the angular 
momentum of circularly-polarized photons reveals the angular momentum of individual photons 
inside the dielectric to be the same as that in vacuum, i.e., ℏ, simply because reflected photons do 
not transfer any angular momentum to the glass slab upon reflection from its front facet.) 
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Fig.8. Light pulse containing 100 photons 
arrives from free space at the entrance facet 
of a glass slab of refractive index n = 1.5. 
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