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Fiber  Optics Receiver Error  Rate  Prediction Using the Gram- 
Charlier  Series 

MASUD  MAN.SURIPUR;  JOSEPH W. GOODMAN,  ERiC G.  RAWSON, 
AND ROBERT E. NORTON 

Abstmct-This paper applies the Gram-Charlier series method  to  the 
dcdation of error  probabilties in digital optical  receivers. This method 
allows the  calculation of “exact” erior peabilities including  the  effecis of 
avalanche noise, themid noise, p d  arbitrary  ,p@detection  procesiing 
filter.  ,The  predictio@ of this method are hmpared .with  those of a simple 
Gaussian appfixhhation &d  with  the  Chernoff ’bounds. Finally, the  effects 
of modal noise included  in  the  thebry, aind some specific Cases are 
explored numericdly. 

I. INTRODUCTION 

The  problem of error  probability calculation for a digital 
opticd  communication receiver has been  considered  by many 
authors. Rice [ I ]  was the first to  give a  comprehensive treat- 
ment o f  this  problem,  although his. work was not  done in the 
context of optical  commu&ations. His results  became  applic- 
able t o  this  problem when  Personick [2]  studied  the  statistics 
of avalaxiche gain and gave a general formula  for calculating 
its  moments. However, these results  are not  directly suitable 
for  error  probability  calculations,’,for  they provide us with 
the  cumuiants  rather  than  the  density  function itself. 

Various authors  [*3]-[5] have applied different numerical 
methods to find  approximations to  the  error probabilities of 
interest. Of particular  importance i s  the work of Personick 
e.t al. [ 7 j  , ‘who  compared  ,various.  methods  for calculating 
these probabilities. Among  the  methods examined was one 
based  on  the results of McIntyre [ 6 ] .  This method served as 
the  standard  (or  “exact”  method) against which the  other 
methods were compared. 

In  this  paper we  consider an  alternative  method for cal- 
culating.  “exact” results against which approximate metho’ds 
can  be compared., A Gram-Charlier expansion  for  the density 
function.is used as the basis for numerical computations. A 
simple recursive formula  for  the  coefficients in this  expansion 
is presented.  The ease with which the Gram-Charlier series 
can  be  integrated greatly  facilitates the  calculation of error 
probabilities. 

Section I1 contains a brief sketch of the  theoretical frame- 
work  ynderlying  the calculations. Section I11 contains numeri- 
cal  results for  both “biphase”  and “integrate  and  dump” 
receivers. Of special interest is the  comparison of the pre- 
dictions  based,  on  the Gram-Charlier series with  the predic- 
tions based on  a’ Gaussian approximation [ 71 and  predictions 
based on  the Chernoff bound  [2],  [7].  Section  IV  contains 
new  results that allow the  prediction of the  effects of “modal 
noise” on  error  probabhity, again by  means of a Gram- 
Charlier expansion.  Section, V contains concluding  remarks, 
and t?ie Appendix  contains  the  theoretical  background  for  the 
calculations of Section IV. 
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11. THEORY 
A  model for a direct  detection  optical receiver that uses 

an avalanche photodiode is shown  in Fig. 1. It is known [ 11, 
[71 that  the characteristic function of the  random voltage at 
the decision point is given by 

where h, is the  nth.cumulant of the  distribution  and is given 
by 

h, = (q/hv)(qRA)“(G“) iT &7)h”(T - 7) d7. ( 2 )  

Here the  symbols have the following meanings: 

is the  quantum efficiency 
is Planck’s constant, 
is the  optical  frequency, 
is the charge of an  electron, 
is the  input resistance of the  postdetection ampli- 
fier, 
is the amplifier gain, 
is the  nth  moment of avalanche gain, 
is the  duration of the waveform representing a single 
bit, 
represents the time-varying optical power incident 
on  the  photodetector,  and . ’ ’ 

is the impulse  response of the linear and time- 
invariant signal-processing filter. 

This  characteristic  functionA J/ (S)  is derived under  the 
assumption  that  for each bit, P(T) is a known,  deterministic 
function  and  that  the  photodetection process (before avalanche 
gain) obeys Poisson statistics.  The  effect of random avalanche 
gain is taken  into  account  through  the  moments (G“), which 
can be calculated from  the following recursive relation [ 21, 
[41 

m= 1 

where 

C1, l  = 1 

Here k is the  ionization  ratio  of  the avalanche diode  and 
(G) is its average gain. 

The  effect of thermal noise of variance ath2-at  tfie decision 
point is taken  into  account  by replacing h 2  by h 2  + a th2 ,  
the reason being that  the characteristic function<of Gaussian 
thermal noise is exp (ath2S2/2!). Since it is independent of 
other noise processes, its characteristic function must multiply 
the  characteristic  function J/ (S)  in  (1). 

For,  computational purposes, it is often convenient to  
normalize the  random variable at  the decision point so that 
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Fig. 1. Schematic of receiver  model. Therefore,  the coefficients a, in  the Gram-Charlier series 
expansion  can be computed  from  (1 1) and (8). Noting the 
recursion relation 

it has  zero  mean  and_unit  variance.  Such  normalization changes 
the  cumulants X, to  X, as follows: q n  (x) = -{XCP, - 1 (x) + ( n  - 1 ) q n  - 2 (x)) (12) 

where 

1 

‘po(x) = - 
One way to  obtain  the density function of a random 

variable from knowledge of its  cumulants is to  use the Gram- 
I Charlier series expansion  of the  density  function,  namely, 

and 

I m 

“=O 
we see that  the  probability density function p(x) could easily 

where be calculated  with  a digital computer, provided the Gram- 
Charlier series is truncated  after a certain  number of terms. 

q n ( x ) = 7  - - - - e m  (-x (6) What we really wish t o  know is the cumulative probability 
dx 6 distribution  function of the  random variable x from which 

error probabilities  can be calculated. The desired probabilities 
The corresponding  characteristic function  of p ( x )  is are  obtained  from  the relationships 

+-  
fi(S) = I, exp (Sx)p (x )  dx 

m 

P ( X )  dx = 3 (I  - erf(-xo/fi)) + I: a n q i -  1 (xo) ,  
n = 3  

= 2 an [r exp (Sx) (x01 < 0 
“ = O  

where where 

p” = (-1y * n !  * a,. (8) 2 x .  
erf ( x o )  = - dx. 

On  the  other  hand,  for  the normalized random variable, 
the characteristic function is also given by 

111. NUMERICAL RESULTS 
(9) Two basic signaling schemes are considered here.  In  the 

first, a  binary 1 is represented  by  a  rectangular-pulse of power .. 
PO, while a  binary 0 is represented  by  a  rectangular pulse of 
power (1 - m)Po. The  parameter m is referred to as the 
“modulation  depth.”  The signal processing filter used in this 
case has  a  rectangular  impulse  response  with  a duration  equal 

(10) to  that of a signal pulse. We refer to this  particular method 
of signaling and detection as “intggrate and  dump.” Fig. 2 
shows the  transmitted waveforms {{and the impulse  response 

Using the recursive relationship  between central  moments  of  the signal processing filter. 
and  cumulants [4], it can be shown  that 

Po = 1 

The second signaling method,  illustrated in Fig. 3, is refer- 
red to  as “biphase” signaling. Here a  binary 1 is represented 
by  a  down-stepping pulse, while a binary 0 is represented  by 
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Fig. 2. Signals and filter impulse response in the integrate-and-dump 
detection case. 

2 2 -lp 
“1” PULSE ” 0 ’  PULSE  FILTER‘S  IMPULSE  RESPONSE 

Fig. 3.  Signals and filter impulse response in the biphase detection case. 

an “up-stepping” pulse. The signal processing  filter is taken 
to have an impulse  response that is a negative rectangular 
pulse  followed by a positive rectangular pulse. 

The Gram-Charlier method described in  the previous section 
is now used to calculate error probabilities in several cases of 
interest. These  results are  compared with those of two  other 
methods  for predicting error probabilities, one based on  the 
approximation  that  the voltage at ,   the  decision point  obeys 
Gaussian statistics  (taking  account of the effect of avalanche 
gain on  the first and second moments),  and  the second based 
on  the Chernoff bound  method [ 2 ] ,  [ 7 ] .  The  number of 
terms used in the Gram-Charlier series varied from 4 to 50, 
depending  on  the  rapidity of convergence. The  computing 
time required for  the Gram-Charlier series was greater than 
that required for  the Chernoff bound,  but  the  former  method 
is more  accurate  than  the  latter  by  an  order of magnitude, as 
the results will show. For simplicity, the Gram-Charlier 
series solution is hereafter referred to as the  “exact”  solution, 
it being understood  that  for  any specific  numerical  results 
presented,  the  number of terms used in  the series was chosen 
to be large enough  to allow verification of convergence. 

The  optical system parameters assumed for these calcula- 
tions are  listed in Table  I.  Results for  the integrate-and-dump 
receiver will be represented graphically with  broken lines, 
while for  the biphase receiver they will be represented by 
solid lines. In all cases, the  detector  threshold is chosen to 
make  the false-alarm and miss probabilities equal to each 
other. 

Fig. 4 shows  plots of the  predicted  error probabilities P, 
versus avalanche gain (G) for  three  methods of calculation and 
for  both  methods of signaling. The following  observations 
can be  drawn from these curves. 

1) All three  methods of calculation predict  an  error proba- 
bility that initially falls with increasing (G), levels out,  and 
finally  increases  with  increasing (G) .  For  the  parameter values 
of Table I,  the  exact  solution suggests that  the  optimum gain 
is about  140. 

2) The  two signaling methods have identical performances 
as predicted by the  exact  method,  and  the Chernoff bounds 
are  the same for  both. However, the Gaussian approximation 
predicts  different  performances  for  the  two  methods. 

TABLE I 
PARAMETERS  USED  IN  THE  NUMERICAL  CALCULATIONS 

Numerical 
Parameter Definition Value 

q Quantum  efficiency 0.85 
v Frequency of light 3.5 X 1014 HZ 

R Input resistance Is2 
A Amplifier gain 1 
k Ionization  ratio  for  the APD 0.02 
T Pulse  duration 10-8 s 

(o&)2 Thermal  noise  variance  normalized lo7 

m Modulation depth 0.75 
to electron charge 

BI-PHASE 
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Fig. 4. Error probability versus avalanche gain as predicted by differ- 
ent  methods and for different  detection  schemes. 

3)  The Gaussian approximation is best at low gains and 
worst at high gains. Its  predictions  are  more  accurate  for  the 
integrate-and-dump receiver than  for  the biphase receiver. 
In all cases considered here,  the Gaussian approximation 
overestimates the  error  probability,  but  its  predictions were 
always  within  a factor of 3 of the  exact results. 

4) The Chernoff bounds overestimate the  error proba- 
bilities by about a factor of ten  at low gains and  somewhat 
more  at high gains. 

Fig. 5 shows  a plot of the error probability P, versus the 
optical power PO falling on  the  detector when an optimum 
gain is used. Only the biphase receiver is considered,  and only 
the Gaussian approximation  and  the  exact  solutions are shown. 
The Gaussian approximation is again found to  be accurate  to 
within  a factor of 3 over a wide range of error  probabilities. 

IV. EFFECTS OF MODAL NOISE 

When the  optical source is highly coherent, an optical 
communication system  can  suffer from  an  additional noise 
that arises within the  fiber itself.  This type of noise is referred 
to as “modal noise” [ 8 ] ,  [ 91, and arises from  micromotion 
of the fiber together with the resulting  differential  phase 
delays introduced  in  the various  propagating  modes.  Alterna- 
tively, such noise can also arise in  a  perfectly stationary  fiber 
if the  frequency of the  optical  source changes due to thermal 
or  other effects. 

If the  coherence  time of the light  radiated  by the  source 
is longer than  the  time delay  difference  suffered by the various 
propagating  modes, then  those  modes  interfere  to  form a 
speckle pattern  at  the  end of the fiber.  This  speckle pattern 
changes .in  time with micromotion of the  fiber  or  with suf- 



IEEE TRANSACTIONS  ON  COMMUNICATIONS, VOL. COM-28,  NO. 3, MARCH 1980 405 

I I I I 

81-PHASE  RECEIVER 

\ 

EXACT  SOLUTION 

8 2  = 0 \ 
I I I I 

12 14 16 18 

Po inWI 

Fig. 5. Error probability versus input power to the detector for bi- 
phase detection scheme. Each point on the curve is calculated at the 
corresponding optimum gain. 

ficiently large frequency  shifts of the light. If this fiber is 
partially  coupled to  one  or  more  other fibers, either by  means 
of a power splitter  or with a somewhat misaligned joint 
connector,  fluctuations of the  transmitted light  power will be 
observed as the moving speckle pattern is only  partially 
intercepted by the fiber that follows. Such fluctuations  can 
degrade the  error probabilities achieved by  the  optical  com- 
munication system. Our  purpose  here  is  to  predict  the  effects 
of such noise on these error probabilities. 

The average area of an  individual  speckle is known  to ap- 
proximately equal the  ratio  of  the square of the wavelength 
A to  the solid angle i2 subtended by the  optical  rays converg- 
ing towards  a  point  in  the speckle pattern [ I O ]  : 

x 2  
A =--. ( 1 5 )  

If the speckle pattern falls on  an area A of the end of the 
second  fiber, then  the average number of speckles intercepted 
by the  latter fiber is 

A Ai2 
M = -  =- 

A s  X2 ' 
(1 6) 

If the  two fibers have different numerical apertures,  then  the 
smaller numerical aperture  must be used to  determine R. 
We have also  made the implicit assumption  that  the numerical 

apertures are constant across the cores of the fibers, as would 
be  true  for step-index  fibers. 

If  the illuminated area A on  the second fiber  represents 
only a  part of the  total speckle pa t t e rq then  shifts of the 
speckles  result  in random  fluctuations of the  amount of 
transmitted power. It is known [ IO]  that  for fully developed 
speckle,  tlie  statistics of the power transmitted by a  finite 
aperture of area A are described  by a gamma distribution 
with parameter M given by (16). If M is much larger than 
unity,  the gamma distribution is  well approximated by a 
Gaussian distribution.  Thus,  the  fraction  of  the power trans- 
ferred from  the first fiber to  the second  fiber is approximately 
a Gaussian random variable, with a  ratio of standard deviation 
to mean given by 

p = - - - = -  UP 1 
P + i *  

(1 7 )  

As might be expected,  the severity of the power fluctuations 
depends  entirely .on the average number of speckles that 
carry  power  into  the second  fiber. 

Let the power incident  on  the optical detector  at  the  end 
of the second  fiber be written 

P(t )  = P(t) + N(t) (18) 

where P ( r )  is the average power, while N(t) corresponds to 
the speckle-induced fluctuations.  In  the most general case, 
N ( t )  can be taken to  be a Gaussian random process with 
autocorrelation  function 

RN(t ,  s) = (N(t)N(s)) .  (19) 

It is shown  in  the Appendix that  the characteristic Cunction 
of  the voltage at  the receiver decision point becomes 

$(s) = exp Z: A,s"/~!  
( n 1 1  ) (20) 

where the  cumulants are given by 

A, = (q/hv)(qRA)" (cn)  ?(7)h"(T- 7) d~ lr 
+ 3 (rl/hv)2(4RA)" 2 (CmXG"-m) 

n- 1 

m = l  (1) 
[ i T R N ( t ,  s )hm(T-- )h"-m(T-- )drds .  (21) 

For  the case of modal noise, the  fluctuations of power 
occur  at  a much slower rate  than  the bit rate of the system. 
Thus,  during  any single bit decision period,  the  modal noise 
can be taken  to be approximately  constant  (but still a  random 
value). With this  assumption,  the  autocorrelation  function  of 
the noise fluctuations  takes  the  form 

RN(t,  s) = P2P(t)k($) (22) 
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and (2 1) becomes 

Reference to (2) shows that  the  cumulants A, in  the presence 
of modal noise  are related to  the  cumulants h, in the absence 
of modal noise  by 

Note  that when the  modal noise parameter 0' approaches 
zero,  the  two  sets  of  cumulants become  indistinguishable. 

It is now possible to apply the. Gram-Charlier method  to 
find  the  error probabilities achieved for various values of p 2 .  
Fig. 6 shows the resulting  variation of error  probability P, 
with  avalanche gain (G) fo'r a  biphase receiver. The curve for 
0' = 0 corresponds to  the case of no modal noise present. 
The curves for p2 = 0.005 and 0.02 correspond to situations 
in which the average number of speckles intercepted by the 
second  fiber are 200 and 50, respectively.  Considering that a 
100  pm  diameter  fiber  with a  numerical aperture of 0.3 used 
with  light of wavelength 1 pm  produces  about 2500 speckles 
across its  end,  it can be seen that  rather severe misalignments 
would be necessary to seriously affect the  error probabilities 
for  such a  fiber. For smaller fibers  with smaller numerical 
apertures,  the  phenomenon poses a more severe problem. 

. The  point of this discussion in this  section has  been  simply 
to demonstrate  that  the Gram-Charlier method can  be fruit- 
fully  applied to  other statistical analysis problems  encountered 
in  optical  communications.  The  method  has been found  to 
yield satisfactorily  convergent series for most cases of prac- 
tical interest,  and to be  reasonably  efficient from a computa- 
tional  point of view. 

CONCLUDING REMARKS 

The Gram-Charlier series has  proved to  be a  useful tool in 
analyzing the "exact" error probabilities for various types of 
optical  communication systems. The analysis has  taken full 
account of both avalanche noise and  thermal noise. The 
Chernoff-bound  method of estimating error probabilities has 
been found  to yield predictions  that are at least a factor of 
ten  too pessimistic for  the particular  system parameters used 
here.  The use of a Gaussian approximation  for  the  detector 
statistics yields much  more  accurate results, but  the  quality 
of this  approximation  depends  somewhat on the signal wave- 
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Fig. 6 .  Error  probability  versus  avalanche gain in the  presence of 
speckles. 

forms chosen to represent  binary ones and  zeros and  the 
particular postdetection filter that is used. Finally,  the Gram- 
Charlier-series method  has been successfully applied to  the 
problem of determining  error probabilities in  the presence of 
modal  noise. 

APPENDIX 

INCLUSION OF THE INPUT NOISE IN THE  GENERAL 
CHARACTERISTIC  FUNCTION 

The  conditional characteristic function of the  random 
variable at  the decision point given the  input power P(T) is 

where 

If P(T) = p(7) f N(T) ,  where $7) is the average input power 
and N(7)  is a zero-mean random process, then  the general 
characteristic function. will  be the  expectation of J/,(S) 
over the ensemble of'all sample functions N(T). From  (A2) 
we have 

where NJ is a J X 1 column vector whose jth element is 
N(7j) and H,,J is another J X 1 column  vector .whose jth 
element is (q/hu)(qRA)" < G" > h"(T - T ~ ) A T ~ .  Therefore, 
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where 

Now if  the  assumption is made  that NJ is a’baussian 
vector  with E[NJ*NJ~] = R we can  write 

exp {- 4 N ~ ~ R  - ‘ N J }  dNJ 

= exp { 2 A, s_” + 4 HJT(S) - R - HJ(S) 
n !  1 

In  the liinit when the  partition becomes  infinitely  fine, 
$(S) will be given by 

which  can  be  written in  the following more  compact  form: 

* ( T - s ) d t d s   n 2 2 ,  
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