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We respond to a Comment on our paper [Phys. Rev. A 80, 023823 (2009)], which appears to have stemmed
from a misunderstanding of the various energy-momentum tensors of classical electrodynamics. It is shown
that each stress tensor, when used in conjunction with the corresponding force-density and momentum-density
expressions, yields results that are consistent with Maxwell’s equations and with the conservation laws.
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Torchigin and Torchigin seem to prefer one particular
energy-momentum tensor of the classical electrodynamics to
the exclusion of other existing formulations. The Torchigins
fault the Lorentz formulation for not complying with the
requirements of the Minkowski formulation. Each formulation
has its own stress-energy tensor, electromagnetic (EM) mo-
mentum density, and EM force density. In Minkowski’s case,
the EM momentum density is p(r,t) = D × B, and the force
density (in a linear isotropic lossless medium) is f (r,t) =
− 1

2ε0[∇ε(r)]E2(r,t). In the case of the Lorentz formulation,
the EM momentum density is the so-called Livens momentum
p(r,t) = ε0 E × B, and the force density (in nonmagnetic
media) is given by f (r,t) = (P · ∇)E + (∂ P/∂t) × B. In
what follows, we will show the application of each formulation
to the examples discussed by the Torchigins. When each for-
malism is applied correctly and consistently, the results comply
with all physical principles and with known experimental
observations.

Example 1. The Torchigins’ first example pertains to
an electrostatic situation. Let a dielectric medium of finite
dimensions be subjected to a static electric field E(r).
Since ∇ × E(r) = 0, we have ∂Ex/∂y = ∂Ey/∂x,∂Ex/∂z =
∂Ez/∂x, and ∂Ez/∂y = ∂Ey/∂z. Denoting the polarization

density of the dielectric medium by P(r) = ε0[ε(r) − 1]E(r),
the Lorentz formalism yields
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ẑ
)]

= 1

2
ε0[ε(r) − 1]

[
∂
(
E2

x + E2
y + E2

z

)
∂x

x̂

+ ∂
(
E2

x + E2
y + E2

z

)
∂y
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The force density of Eq. (1) may now be integrated over the
volume of the object under consideration using the method of
integration by parts as follows:
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In the above derivation, the terms involving [ε(r) − 1]E2(r)
at ±∞ are set to zero because, outside its boundaries, the object
is surrounded by vacuum where ε(±∞) = 1. The total force
in the Lorentz formalism is thus seen to be identical to that of
Minkowski. Therefore, so long as the experimental evidence

is based on the total force exerted on an isolated object, there
cannot be any distinction between the electrostatic Lorentz
force and its Minkowski counterpart.

It is a well-known fact that different formulations of
classical electrodynamics lead to different force-density
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FIG. 1. (Color online) A nearly monochromatic plane wave of
finite duration arrives at normal incidence at the front facet of a
dispersionless dielectric slab of refractive index n. The beam is
linearly polarized along the x axis. The incident, reflected, and
transmitted E-field amplitudes at the entrance facet (z = 0) are Einc,
ρEinc, and τEinc, where ρ = (1 − n)/(1 + n) and τ = 2/(1 + n) are
the Fresnel reflection and transmission coefficients of the slab. For
each of the incident, reflected, and transmitted waves, the H field
is along the y axis, having a magnitude of E/Z0 in vacuum and
nE/Z0 within the dielectric; here E is the corresponding E field
and Z0 = (μ0/ε0)1/2 is the impedance of free space. The trailing
edge of the incident pulse moves toward the slab at the speed of
light in vacuum, c, whereas the leading edge of the reflected pulse
moves away from the slab at the same speed. The leading edge of
the transmitted pulse propagates through the slab at the speed of light
c/n within the dielectric.

distributions [1,2]. We, among others, have pointed out these
differences in several previous papers and have discussed the
problem in detail in a recent paper [3]. Therefore, to the extent
that the Torchigins claim that the force-density distributions in
the two formulations differ from each other, we do not disagree
with them. However, this does not imply the superiority of
one theory over the other. The existing experimental evidence
(including the nanofiber experiment of She et al., cited by
the Torchigins in their Comment as Ref. [12], here Ref. [4])
pertains only to the total EM force exerted on isolated bodies.
What is needed is experimental data on force distribution
within material objects in order to decide among the various
EM force formulations.

Example 2. In the case of a plane wave entering at normal
incidence from free space into a dielectric slab of refractive
index n = √

ε, one must use a light pulse of finite duration
in order to see the similarities and differences of the two
formulations; see Fig. 1. We emphasize that, in any analysis of
EM systems involving force and torque, the explicit inclusion
of the leading and trailing edges of the incident, reflected,
and transmitted beams is mandatory. Many controversies and
inconsistencies in the published literature stem from neglecting
the important property that, in their spatial as well as temporal
extents, all EM waves are finite. From a theoretical standpoint,
the necessity of such finite dimensions is dictated by the
stress-tensor formulation of electrodynamics, which affirms
the conservation laws only when the fields are stipulated to
vanish at infinity. From a practical point of view, not only
must all conceivable sources of radiation have finite extent,
but also they must be turned on at some finite point in
time and turned off at a later (finite) time. Therefore, strictly
speaking, the conventional assumption that plane waves extend
to infinity in time and space is never justified. Only when
the contributions to EM force and torque at the far away

boundaries of a plane wave are known to be negligible (or
to be irrelevant) can the artificiality of infinite extent be safely
retained.

Returning now to the system depicted in Fig. 1,
in Minkowski’s case, the force density f (r,t) =
− 1

2ε0[∇ε(r)]E2(r,t) acts only on the front facet of the
slab, where ∇ε �= 0. Since the E field at the interface is
Ex = (1 + ρ)Einc, where ρ = (1 − n)/(1 + n) is the Fresnel
reflection coefficient and Einc is the incident field amplitude,
the time-averaged Minkowski force per unit area of the
dielectric surface is found to be
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The Minkowski force in Eq. (3) is a “pull” force exerted
by the EM field at the entrance facet of the slab. Now, the
time rates of change in the incident and reflected momenta
(per unit cross-sectional area) are given by the speed of
light c times the vacuum momentum density p(r,t) = E ×
H/c2 = (ε0E

2
x/c) ẑ. Combining the contributions of incident

and reflected pulses and multiplying by 1
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Inside the dielectric, the E-field amplitude is Ex = τEinc,
where τ = 1 + ρ = 2/(1 + n) is the Fresnel transmission
coefficient at the front facet. The time rate of change in the EM
momentum inside the slab is the velocity c/n of the leading
edge of the light pulse times the Minkowski momentum
density, namely,
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The time rate of change in the total EM momentum is
obtained by adding Eqs. (4) and (5), that is,
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This is precisely equal in magnitude and opposite in sign
to the Minkowski force of Eq. (3), which acts on the entrance
facet of the slab. The increase in the total EM momentum of the
system given by Eq. (6) is thus balanced by an increase in the
mechanical momentum of the slab in the opposite direction;
the latter is represented by the time-averaged force 〈Fz〉 of
Eq. (3).
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Next, we derive the corresponding results in the Lorentz
formulation where the force exerted on the dielectric is
confined to the leading edge of the transmitted light pulse.
In this case, f (r,t) = (P · ∇)E + (∂ P/∂t) × B. However,
(P · ∇)E = 0 for the chosen geometry, and the remaining
term yields
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(Note that the force density at the leading edge of the pulse
does not vanish; the argument advanced by the Torchigins
based on time averaging fails when applied to the leading
edge of the pulse.) Integration of the above force density along
the z axis (from z = 0 to ∞), followed by multiplication by
1
2 (to account for time averaging), yields the force per unit
cross-sectional area of the slab as follows:
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Thus, in contrast to the result obtained in the Minkowski
case, the Lorentz force exerted on the dielectric (via the leading
edge of the pulse) is seen to be a “push” force.

The time rate of change in the total EM momentum of
the system is obtained as before, except that now the Livens
momentum density p(r,t) = ε0 E × B = E × H/c2 appears
inside the slab. Following a similar path that led to Eq. (6), we
now find
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Once again, the time rate of change in the EM momentum
of the system given by Eq. (9) is seen to be equal in magnitude
and opposite in sign to the net force exerted on the dielectric
medium as given by Eq. (8b).

Both Minkowski and Lorentz formulations thus conserve
the total (i.e., EM plus mechanical) momentum. However,

the net force, the EM momentum, and the force distribution
within the material medium are very different in the two
formulations. Moreover, the push force predicted by the
Lorentz formulation complies with the dictates of the Balazs
thought experiment [5], whereas Minkowski’s pull force does
not.

We believe the Balazs thought experiment provides a pow-
erful theoretical argument in favor of the Lorentz formulation
and against that of Minkowski. Nevertheless, in the absence
of definitive experimental evidence, perhaps one should keep
an open mind and allow for the possibility that at least one of
the two theories may be incorrect. This, of course, is far from
the Torchigins’ stance, who argue that every one of the papers
published based on the “formula . . . advanced by Gordon in
1973” [6] is erroneous.

We emphasize that the example cited by the Torchigins
involving a semi-infinite dielectric and an infinitely long
plane wave cannot be analyzed correctly unless the situation
at infinity is treated with great care. We have chosen a
finite-duration pulse of light in the above analysis, precisely
to avoid the ambiguities inherent in situations where both the
dielectric medium and the light beam have infinite extents. The
Torchigins do not allow a leading edge for the light beam and,
therefore, reach the conclusion that the optical force exerted
on the semi-infinite dielectric medium is zero—which would
violate momentum conservation. As discussed in the preceding
paragraphs, the correct treatment shows that momentum is
properly conserved. Acceptance of the infinite extent for a
plane wave has thus led the Torchigins to a questionable
conclusion. The inclusion of the leading and trailing edges
of the light pulse in the above analysis is not optional; the
ignorance of this fundamental fact is the main flaw in the
Torchigins’ argument.

There exist other ways to handle the problems associated
with extending the medium and the light beam to infinity along
the propagation direction. For example, one might allow for
a tiny absorption coefficient in the dielectric medium so that
the incoming light will never reach the far end of the dielectric
slab. Alternatively, one could assume a finite thickness for the
dielectric slab, albeit with an antireflection layer placed at the
exit facet. Each of these situations can rigorously be analyzed,
and the results in each case turn out to be consistent with
classical electrodynamics and with the conservation laws.

The important point here is that the Lorentz formalism
(based on the application of the Lorentz force law F = ρ E +
J × B to media that contain electric and/or magnetic dipoles)
is a consistent method for calculating the EM force and
torque exerted on material bodies. This formalism complies
with the conservation laws and with the important theoretical
argument of Balazs [5]. The Torchigins prefer a different
force law (based on Minkowski’s stress-energy tensor) and
reach different conclusions, which also contradict the Balazs
thought experiment [5]. We strongly object to their claim that
our method of force calculation based on the Lorentz law is
wrong—despite the fact that no experimental evidence has
contradicted the predictions of the Lorentz formalism, nor
has it been rejected on theoretical grounds involving lack of
consistency with well-established physical principles.

The Torchigins’ treatment of the Lorentz force is ques-
tionable as it leads to a violation of momentum conservation.
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We have shown here that a correct calculation (i.e., one that
incorporates the effects of the leading edge of the light beam
within the dielectric medium) removes possible objections (on
theoretical grounds) to the application of the Lorentz force law.
The question of whether the correct physics is represented
by the method of Lorentz or that of Minkowski is an
experimental issue which lies outside the domain of the present
discussion.

Example 3. The Torchigins object to our analysis of a
quarter-wave-thick (λ/4) dielectric slab in conjunction with
the Lorentz formulation, citing the violation of Newton’s third
law (action = reaction) and the existence of the Abraham
force. Once again, we believe these objections stem from
a misunderstanding of the various formulations of classical
electrodynamics. In our calculations of the Lorentz force on a
(λ/4)-thick slab (described in the Torchigins’ Refs. [6,7], here
Refs. [7,8]), we computed the EM force using the E and H

fields of the standing wave within the slab. This force was then
shown to agree with the time rate of change in the overall EM
momentum of the system. Similar calculations may be carried
out using various other formulations of electrodynamics (e.g.,
Minkowski, Einstein-Laub, and Abraham). In each and every
case, the net force exerted on the λ/4 slab will turn out to be
equal in magnitude and opposite in direction to the time rate
of change in the total EM momentum of the system.

Momentum continuity is expressed in terms of the EM

stress tensor
↔
T , the EM momentum density p, and the EM

force density f as follows:

↔∇ · ↔
T (r,t) + ∂p(r,t)/∂t + f (r,t) = 0. (10)

In the Minkowski formulation,
↔
T (r,t) =

1
2 (D · E + B · H)

↔
I − DE − B H , whereas in the Lorentz

formulation,
↔
T (r,t) = 1

2 (ε0 E · E + μ−1
0 B · B)

↔
I − ε0 E E −

μ−1
0 B B. Similarly, in the Einstein-Laub formulation,

↔
T (r,t) = 1

2 (ε0 E · E + μ0 H · H)
↔
I − DE − B H . As

mentioned earlier, each formulation has its own
expressions for EM momentum density and EM force
density.

In Abraham’s formulation, the stress tensor is the same as
that of Minkowski, but the momentum density is p(r,t) =
E × H/c2, rather than D × B. This difference in p results
in an additional term, namely, ∂(D × B − E × H/c2)/∂t

in the Abraham force-density formula. In the absence of
magnetization, M(r,t) = 0, B = μ0 H , and the extra term
becomes ∂(P × B)/∂t , which is the force density f 2 in
Eq. (3) of the Torchigins’ Comment. This is simply the term
that must be added to Minkowski’s force density in order to
arrive at Abraham’s expression for the EM force density. It
is, therefore, not clear what the Torchigins mean when they
state that “This kind of force and the Lorentz force form the
Abraham force . . . .” As far as we know, the Abraham force
and the Lorentz force fall into two distinct categories, each with
its own expression of the stress tensor and the EM momentum
density.

The Torchigins state that “the momentum of a light wave
propagating in a homogeneous optical medium is constant
within the optical medium. The same is valid for any number of

light waves. Thus, there is no change in the momentum of light
in a homogeneous optical medium.” In general, this statement
is correct, but the Torchigins proceed to invoke Newton’s third
law and draw a questionable conclusion from it as will be
explained below.

Interference among various plane waves propagating inside
a homogeneous medium (such as those inside our λ/4 plate)
gives rise to optical fringes where the E and H fields vary
drastically from one place to another. The EM momentum
density, which depends on these fields, thus varies from point to
point inside a homogeneous medium. There will be rapid (i.e.,
at optical frequencies) changes in the local EM momentum
density, giving rise to (rapidly varying) local EM forces.
However, the time-averaged force densities arising from such
rapid momentum-density fluctuations inevitably vanish. So far,
we are in agreement with the Torchigins. However, Eq. (10)
above indicates that the EM force density arises not only
from the temporal variations in local momentum density

p, but also from the divergence of the stress tensor
↔
T .

The interference among two or more plane waves within a
homogeneous medium thus produces spatial variations in the
E and H fields, which lead to spatial variations in the stress
tensor. It is these stress-tensor variations (from one location
to another inside the homogeneous medium) that produce, in
accordance with Eq. (10), the local force densities inside our
λ/4 plate. This is why the Torchigins’ reasoning based on
Newton’s third law cannot apply to EM force and momentum.
(As a matter of fact, in the example of the λ/4 plate, as in
any other steady-state situation, the Minkowski force density
is also produced by the divergence of the stress tensor,
not by any temporal variations in the local EM momentum
density.)

As a simple example, consider the reflection of a plane
wave at normal incidence from a perfect mirror in vacuum.
Obviously, the mirror is pushed by the radiation pressure.
However, there is no change in the (time-averaged) EM
momentum density in the homogeneous medium of incidence
(vacuum in this case). If the Torchigins’ argument was correct,
there would be no forces exerted on the mirror, contrary to both
theoretical and experimental evidence.

In conclusion, we strongly disagree with the Torchigins’
assertion that the Lorentz formalism is a misconception,
which should be abandoned, and that our analysis (based on
the Lorentz formalism) of the nanofiber experiments of She
et al. [4] has somehow been erroneous. What the Torchigins
have attempted to show is that, under certain circumstances,
the predictions of the Lorentz law differ from those of the
Minkowski theory. However, to the best of our knowledge,
none of these differences have been subjected to rigorous
experimental verification. Moreover, Minkowski’s theory is
known to violate the dictates of the Balazs thought experi-
ment [5]. The Torchigins’ critique of the Lorentz formalism
thus boils down to pointing out certain differences with
the predictions of another formalism—that of Minkowski.
These are hardly sufficient grounds for rejecting one theory
and embracing the other. They do, however, highlight the
general areas where experiments are needed to decide which
formalism, if either, is correct. We hope that the above
explanations have clarified the situation.
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