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Abstract 

A model for the magnetization of the needle and its interaction with 
the sample in magnetic force microscopy is described. The model 
takes full account of the micromagnetic interactions involved. 

Introduction 

Magnetic force microscopy (MFM)l is an offshoot of scanning 
tunneling microscopy (STM), and has the potential for high-resolution 
(-100 A) observations of magnetic domains and domain walls. In 
MFM a sharp magnetic needle interacts with the field pattern 
established by the sample near its surface. A cantilever then converts 
the force on the needle to a displacement, which is measured 
interferometrically or otherwi~e.~ In this paper we describe a model 
for the tip that takes full account of the micromagnetic interactions 
involved. An example of the force computation is also presented. 

A Model for the Magnetization of the Needle 

The needle’s model used in this paper is shown in Figure 1. The tip 
and the stem are treated separately as indicated. The cubes that 
comprise the needle’s tip are arranged in layers parallel to the XY 
plane. Thus the needle’s axis is along 2 and the centers of the cubes 
in the kfh layer are at zk where 

~k = ~1 + ( k  - I)A . (1 )  

Here z1 is the vertical coordinate of the center of the cube at the 
sharp end of the needle, and A is the linear dimension of the cubes. 
Within each layer the cubes are arranged in a square, centered on the 
needle’s axis. The number of cubes in layer k will be denoted Nk2. 
Although no restrictions are imposed on the values of A and N,, in 
practice A should correspond to the average grain (crystallite) size of 
the needle’s material and Nk’s must be chosen in accordance with the 
geometry of the tip. Figure 2 shows cross sections of the tip for two 
sets of values of N,. In (a )  NI = 1, N, = 2, N3 = 3, N, = N, = N6 = 
4, for a total of 62 cubes and a cone angle of 8 U 53O. In (b) N ,  = 
N, = 1, N3 = N4 = 2, N, = N6 = 3, N7 = N8 = N9 = N,, = 4, for a 
total of 92 cubes and a cone angle of 8 U 28O. 

FigJ Magnetic needle scanning the surface of a magnetic film. The 
micromagnetic model treats the tip as a collection of cubical 
elements. 

Each cube corresponds to a crystallite in the actual needle; 
therefore, a single dipole of strength j i  is assigned to each cube. 
Assuming that the needle’s material has saturation magnetization M , ,  
the assigned dipole moment’s strength will be 

p = MsA3 . (2) 

The orientation of these moments in space is not arbitrary and depends 
on a number of factors that will be identified in the remainder of this 
section. To begin with, each grain has one or more easy axes 
depending on its crystalline structure and shape. For the sake of 
simplicity, we shall assume that each dipole has uniaxial anisotropy4 of 
strength K , .  Both K ,  and the direction of the easy axis for individual 
lattice sites are parameters that can be arbitrarily assigned. 

(a) (b) 

Fig.2 Two possible cross sections of the tip. 

The second factor that plays a role in determining the 
magnetization of the needle is exchange interaction between 
neighboring grains at their common boundaries.4 This interaction is 
represented by an equivalent exchange field that tends to align a given 
dipole with its nearest neighbor. The exchange field between a pair of 
cubes in full contact is denoted by Hxhg; when only a fraction of the 
adjacent surfaces of the two cubes make contact, the exchange field is 
proportionally reduced. Since direct methods for the measurement of 
the exchange field do not presently exist, Hxhg shall be treated as an 
adjustable parameter. 

Classical dipole-dipole interactions make a significant contribution 
to the forces that determine the state of magnetization of the needle. 
The dipolar field is long-range and must be computed between each 
and every pair of dipoles. The fact that cubes of uniform 
magnetization are replaced by point dipoles is the source of some 
inaccuracy in the calculation of dipole-dipole (demagnetizing) 
interactions. Nonetheless, given the nature of the model and the 
degree of approximation brought about by our other assumptions, the 
errors involved in demagnetization calculations are quite acceptable. 

Finally, the tip’s magnetization is influenced by the magnetic 
charges in the stem and by the external field produced by sources 
outside the needle (such as the magnetic surface being probed by the 
tip). The effect of the external field will be treated in the next 
section. As for the stem, one possibility is to assume that it is 
magnetically hard and saturated along the 2 axis. The exchange field 
acting on the lattice sites just below the stem will then be H x h g l .  
Calculation of the demagnetizing field of the stem on individual 
dipoles of the tip, arising from the uniform charge distribution on the 
stem’s bottom surface, is rather straightforward. 
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Computation of the Stray Magnetic Field for  a Thin Film 

Consider a magnetic film of thickness h in the X Y  plane. The film's 
magnetization is uniform through the thickness and is therefore 
represented by M ( x ,  y). The magnetic field H ( x ,  y, z )  and the 
gradients of the field components can be computed with the aid of 
Fourier  transform^.^ Since details of the Fourier technique have 
already been published this discussion shall focus only on the main 
points. The region of the X Y  plane used in field computations has 
dimension L, x L,. Due to the periodic nature of the Fourier series, 
however, it is as though the entire X Y  plane were covered with 
identical tiles of dimension L,  x L, x h. (Artificial effects of this 
periodic boundary condition remain confined to the region near the 
boundary.) The Fourier components of M ( x ,  y )  are 

In the frequency domain f only discrete frequencies with f ,  = ni /L ,  
and f ,  = n / L ,  are allowed. The magnitude of the vector f is 

f = If1 = j m  = S(m/L,)Z t (?1/Ly)2 . (4) 

Now consider the magnetic field H ( x , y )  in a plane Z = z above the 
film's surface. (Since the film's midplane is at Z = 0 the results apply 
only to the region z ? h / 2 . )  Periodicity of M ( x , y )  implies that 
H ( x ,  y )  in the plane Z = z is also periodic, therefore, 

The Fourier component H,, of the field depends only on the Fourier 
component of the magnetization with the same frequency. The 
relationship between H,, and M,, is 

H,,(z) = -4r exp(-2rfz) sinh(rhf) (M,,,~u,,,) U,, . ( 6 )  

In Eq. ( 6 )  f is the magnitude of the frequency vector f as given by 
Eq. (4), and the complex vector U,,, is defined as 

Note that the explicit dependence of the field on film thickness h can 
be removed by normalizing L, ,  L,,  x ,  y and z by h. Also notice that 
Eqs. ( 3 ) ,  (5), and ( 6 )  imply that the field distribution at Z = z is 
merely a filtered version of the magnetization pattern M ( x , y ) .  The 
Fourier transforms in Eq. (3) and Eq. (5) are computed with a two- 
dimensional F F r  algorithm. 

The average magnetic field over the volume of a cube could be 
Consider a cube of 

Z 
obtained with only a small additional effort. 
dimension A, centered at ( x o , y o , z o ) ,  with sides parallel to the X, 
axes. The average field 

can be determined from Eqs. ( 3 ) ,  (5), ( 6 )  provided that the right side 
of Eq. ( 6 )  is multiplied by the (frequency-dependent) constant C,,: 

In other words, the average field computation requires only the 
modification of the spatial filter described in Eq. (6) .  

Micromagnetics of the Needle 

Each grain (crystallite) of magnetic matter within the needle is subject 
to magnetic forces of various origins. Local anisotropy, exchange 
interaction with nearest neighbors, demagnetizing field produced by all 
the other grains in the needle, and the externally applied field add up 
to create a single effective magnetic field H ( e f f )  acting on each grain. 
NOW if the grain's dipole moment is denoted by p, the Landau- 
Lifshitz-Gilbert equation6 describes the dynamics of this dipole's 
gyration as follows : 

(9) 

In this equation ii is the time derivative of p. 7 is the gyromagnetic 
ratio, and a is the viscous damping coefficient. 

To determine a stable configuration for the tip magnetization, the 
starting point is to assign an initial direction to each dipole in the 
lattice. The effective field H ( e f f )  is then computed for each site and 
the system of dipoles is relaxed in accordance with the Landau- 
Lifshitz-Gilbert equation. The procedure is repeated until a stable 
configuration (i.e., local minimum of energy) is obtained. Details of 
the simulation algorithm can be found in Ref. 7. 

Once the state of magnetization is determined, the net force on 
the needle is computed by adding the force of the external field 
experienced by individual grains. The force on a point dipole p in the 
field H ( x ,  y ,  z )  is 

F = v Ir . H(x, Y ,  z)l . (10) 

In matrix notation Eq. (IO) is written 

Since V x H  = 0 the 3 x 3 matrix of gradients in Eq. (11)  must be 
symmetric (i.e., a H y / a x  = a H , / a y  and so on); therefore only six out 
of the nine elements of this matrix need to be evaluated. 

Using Eqs. ( 5 )  and ( 6 ) ,  one can derive the Fourier series 
representation for each row of the gradient matrix as follows : 

a x  = i 2 r f X H , , ( z )  exp 
111-00 n=-m 

= (-2r/)H,,(z) exp az 
n1=-00 11=-00 

The force components in Eq. ( 1 1 )  must be averaged over the volume 
of the cube corresponding to the dipole p .  Since p is constant 
throughout the cube the averaging is done over the field gradients. 
The procedure is similar to the one described in the previous section 
regarding the averaging of H, and so is the result : The average field 
gradients are still obtained from Eqs. (12) provided that the H,, (z )  of 
Eq. ( 6 )  are first multiplied by the C,, of Eq. (8). 

Finally, the force experienced by the tip must be added to the 
force exerted on the stem. For a hard stem saturated along Z this force 
is obtained by a simple integration of the external field over the 
charges on the bottom surface. 
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Results and Discussion 

Consider a needle with the tip cross section as shown in Fig. 2(a). Let 
M ,  = 1500 emu/cm3, K ,  = IO7 erg/cm3, Hxhg = 1000 Oe, and the 
axes of anisotropy have random directions in space. Other parameters 
of the model are A = 250 A, a = 0.5, and 7 = -IO7 Oe-l. sec-'. We 
started the simulation with all dipoles aligned in the +Z direction and 
relaxed the interacting system of dipoles following the Landau- 
Lifshitz-Gilbert equation. The energy of the system was computed 
during the relaxation process and is shown in Figure 3. It is observed 
that the contributions of both anisotropy and demagnetization to the 
total energy decrease in the process, while the contribution of 
exchange increases. The total energy is a decreasing function of time, 
as expected. 

After about 500 iterations (corresponding to 300 psec. in Fig. 3) 
the magnetization of the tip reached a stable configuration which is 
shown in Fig. 4. By this time the average magnetization along Z has 
dropped from Ms = 1500 emu/cm3 to (ME) = 886 emu/cm3. 

Next we calculate the field and field gradients for a film with 
thickness h = 300 A and saturation magnetization M,,  = 100 emu/cm3. 
The film is magnetized perpendicular to its surface and contains two 
straight domain walls, both parallel to the Y axis. The center of the 
first wall is at X = 800 A while that of the second wall is at X = 2400 
A. The basic pattern of magnetization is defined between X = 0 and 
X = L, = 3200 A. The wall thickness parameter 6, is 75 A and the 
wall structure is a simple Bloch wall with e(x) and &x) given by 6,7 
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Fig.4 Magnetization of the tip in the 
steady state. The state of each 
dipole is shown by an arrow with 
an appendage. The arrow is the ) t/ 
component of magnetization along 

component in the XY plane. 
Different blocks of arrows in this 
figure correspond to different 
layers of cubes in the tip's model 4 f v\ 
shown in Figure 1. 
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Z while the appendage is its / v t \  

l#J(x) = 2 

The field and field gradients are computed with an FFI' algorithm, 
using a sampling interval of 25 A . 

When the needle is brought to the film's vicinity, the tip's dipoles 
are allowed to relax further in order to conform to the field of the 
magnetic film. For the particular set of parameters used in these 
calculations, we found that the effect on the magnetization of the tip 
was small: depending on the position of the needle along A', the 
average Z component, ( M z ) ,  varied within 21% of its value at zero 
field. With the needle's magnetization in a stable state, we calculated 
the force and then repeated the procedure for the next point along X. 
Figure 5 shows F, and F ,  as functions of x in the interval 
0 5 x 5 I600 A. (The wall is at the midpoint of this interval.) The 
separation between the sharp end of the tip and the sample is 100 A. 
Note that the peak of F, and the zero-crossing of FE occur at the wall 
center. 
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Fig.5 Horizontal and vertical components 

of force versus tip's position along 
X. The sample has perpendicular 
magnetization with a straight Bloch 
wall at x = 800 A. 
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