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Coercivity of magnetic domain wall motion near the edge of a terrace 
Yung-Chieh Hsieha) and M. Mansuripur 
Optical Sciences Center, University of Arizona, Tucson, Arizona 85721 

(Received 12 September 1994; accepted for publication 14 March 1995) 

Domain wall motion near the edges of terraces (e.g., grooves, pits, plateaus, etc.) is studied using 
analytical techniques based on the minimum energy principle and computer simulations based on 
the dynamic Landau-Lifshitz-Gilbert equation. One-dimensional lattices of magnetic dipoles with 
variations either of the easy axis direction (corresponding to a tilt of the anisotropy axis at the edge) 
or of the nearest-neighbor exchange force (corresponding to a changing film thickness) are 
considered. We show that the coercivity caused by the terrace edge could be as large as several kilo 
Oe. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

In magneto-optical disks a thin magnetic film (typically 
an amorphous TbFeCo alloy) is deposited on a grooved sub- 
strate. The grooves are usually V-shaped depressions on the 
otherwise flat surface of the substrate, having a depth of -70 
nm and a width of about 0.5 pm. The grooves are separated 
from each other by the so-called “land” regions, which have 
a width of about 1 pm. The magnetic film is sputter- 
deposited on the grooved surface of the substrate, and has a 
thickness of -30 nm. Observations using polarized light mi- 
croscopy have revealed that magnetic domains recorded on 
the land regions of the disk have a tendency to stick to the 
edges of the grooves and not propagate beyond these edges, 
unless a magnetic field with a relatively large amplitude is 
applied.’ It appears as though the groove edge is acting as a 
pinning site for the magnetic domain wall. 

Several mechanisms can be conceived for the pinning 
effect at the groove edge. One possibility is that the direction 
of magnetic anisotropy (i.e., the easy axis of magnetization 
for the TbFeCo film) on the land is different from that on the 
walls of the V-shaped groove. This might seem a reasonable 
assumption in light of the fact that the direction of film depo- 
sition on average is perpendicular to the land regions, but has 
a certain obliquity relative to the groove walls. Another pos- 
sibility is that the film on the groove might be somewhat 
thinner than that on the land, causing the surface area of 
magnetic domain walls in the groove region to be smaller 
and, thereby, providing a low-energy environment (i.e., a po- 
tential well) for the domain walls. Yet a third possibility 
exists that the film composition (namely, the percentages of 
the rare earth and the transition metal in the alloy) may be 
different for the land and the groove regions. This seems 
plausible considering the fact that the resputtering rate of 
Terbium during film growth is known to be a function of the 
sputtering direction. If the composition happens to be close 
to the compensation composition at room temperature, then 
even a slight change of composition can cause a drastic 
change of coercivity, thereby creating a pinning effect at the 
edge of the groove. This effect, however, would be small 
when the average composition is far from the compensation 
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point and, moreover, its effect will depend on which side of 
the compensation composition the film happens to be: On 
one side of the compensation point, domains will stop when 
expanding from the land to the groove, while on the other 
side, having originated within the groove, they will stop 
when crossing over into the land. Based on numerous obser- 
vations, however, we believe that the change of composition 
is not a determining factor of the pinning mechanism. We 
therefore consider the first two possibilities mentioned above 
as the likely causes of pinning, and set out to analyze them in 
this article. 

Let us also mention that, in addition to explaining an 
observed phenomenon, the work in this area has been moti- 
vated by the possibility of utilizing the pinning effect to ad- 
vantage in a somewhat different context. Suppose that the 
land regions on a magneto-optical disk substrate were em- 
bossed with regular depressions only a fraction of a mi- 
crometer across and a few nanometers deep. Then the writing 
and readout processes could be modified to take advantage of 
this patterned track by confining the domains within the de- 
pressions and by utilizing detection schemes (such as partial 
response) that are best suited to a jitter-free environment. We 
have recently demonstrated effective pinning of domains 
within square-shaped depressions that are only 20 nm deep, 
and are produced by ion-beam milling on a glass substrate.2’3 
This observation can potentially lead to higher-density data 
storage systems and, therefore, merits closer examination. 

A. Scope of the article 

The theoretical analysis presented in the following sec- 
tions confirms that either one of the postulated mechanisms, 
namely, the change of the easy axis or the change of film 
thickness on the side-walls (side walls are the slanted regions 
of the grooves), can result in domain wall pinning, provided 
that the width of the side wall is greater than the width of the 
magnetic domain wall. (In TbFeCo films, typical domain 
walls have a width of -10 nm.) The consequences of the 
change of direction of the anisotropy axis will be discussed 
in Sec. II, and the effects of a reduced film thickness at the 
sidewall will be considered in Sec. III. In addition to dy- 
namic simulations described in Sec. III B, we consider the 
effects of a reduced film thickness from the view point of the 
minimum energy principle in Sec. III C, and derive a rela- 
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FIG. 1. (a) Schematic diagram showing magnetic dipoles in a one- 
dimensional lattice. A domain wall is shown centered in region A. In region 
B, the dipoles are not in the Z direction, but are tilted towards the easy axis. 
(b) Region B which contains lattice sites 40-60 has an easy axis tilted at 
angle 6’ from the 2 axis. Regions A and C have easy directions along the Z 
axis. 

tionship between thickness variations and the coercivity of 
wall motion. It is not yet known which one of the two 
mechanisms is at work in real films, but the results of analy- 
sis and simulation are certainly consistent with the observa- 
tions of numerous samples deposited on variously patterned 
substrates. 

The simulations are based on the Landau-Lifshitz- 
Gilbert equation of magnetization dynamics. A system of one 
hundred dipoles in a one-dimensional lattice has been con- 
sidered. Each dipole responds to an external magnetic field, 
interacts with its two nearest neighbors through exchange 
coupling, and also reacts to deviations from a local easy axis. 
For simplicity, the demagnetizing effects, which originate 
from classical, long-range dipole-dipole interactions, have 
been ignored. 

II. TILT OF THE ANISOTROPY AXIS IN THE REGION 
OF THE SIDEWALL 

The simulation is based on the methods described in Ref. 
4. The following set of parameters was used throughout: 
saturation magnetization MS= 100 emu/cm3, anisotropy con- 
stant K, = 1 O6 erg/cm3, macroscopic exchange stiffness coef- 
ficient A, = 10m7 erg/cm, gyromagnetic ratio y= - lo7 Hz/Oe, 
dipole spacing or lattice constant d= 10 A, and viscous 
damping parameter a=3. The wall width parameter is thus 
given by S=(A,lK,)0,5=31.6 A. 

A one-dimensional array of magnetic dipoles containing 
a finite number of elements is shown in Fig. 1. We con- 
strained the first dipole to have its moment oriented in the up 
direction, and the last dipole to have its moment in the down 

direction. In regions A and C, the anisotropy axis is parallel 
to the 2 axis. Region B, located on lattice sites from s =40 to 
s=60, has an easy axis tilted away from the 2 axis by an 
angle 8. A domain wall placed in region A moves to region B 
under a small magnetic field, Hext, applied in the positive 2 
direction. Upon increasing the external field gradually, we 
observe that the wall stays in the region B until the field 
reaches some critical value, at which point the wall leaves 
region B and enters region C. Figure 2(a) shows the depen- 
dence of the wall center position on the external field as 
obtained in one of our simulations for the case of 19=70”. In 
the beginning, the wall center is at s = 14, but under an ap- 
plied field of only 100 Oe, it moves to s =44. Afterwards, the 
field increases, but the wall does not move substantially, 
staying in the vicinity of s=50. When the applied field 
reaches 8.8 kOe, the wall suddenly jumps to s=96. Figure 
2(b) shows the wall shapes corresponding to several points in 
Fig. 2(a). The bump in the center region (s =40-60) for the 
curves corresponding to H=O and H=8.8 kOe arises from 
the tilt of the anisotropy axis (19=70”). 

The physical reason for the observed behavior is as fol- 
lows. The Landau-Lifshitz-Gilbert equation always pushes 
the system to a state of minimum energy. In the simulations, 
the total energy of the system consists of two parts: the mag- 
netic domain wall energy and the external field energy, the 
wall energy being the sum of the anisotropy and exchange 
energies. Without an external field, the wall energy in regions 
A and C is equal to 4(A,K,) ID= 1.26 erg/cm’. The external 
field energy density is equal to -MH cos qb, where 4 is the 
angle between magnetization and the direction of magnetic 
field. Therefore, with reference to Fig. 1, the external field 
exerts a driving force to move the wall to the right. Consider 
a situation where the anisotropy is uniform, with its axis 
pointing in the same direction everywhere. The wall energy 
is then independent of the wall position, but the external field 
energy decreases as the wall moves to the right. Therefore a 
fairly small field is all that is needed to move the wall. On 
the other hand, when region B has its easy axis tilted away 
from the Z axis, the anisotropy energy will be smaller if the 
wall stays in B rather than go to C. This is due to the fact 
that the average direction of the dipoles within the wall will 
be closer to the easy axis if the wall stays in B. Thus if the 
domain wall moves from B to C, its energy will increase. 
Only when the reduction in the external field energy is stron- 
ger than the rise in the wall energy, will the wall leave region 
B and enter C. Figure 2(c) shows plots of the anisotropy and 
exchange energies versus the iteration time for the simulation 
whose results were depicted in Figs. 2(a) and 2(b). The wall 
energy drops upon entering region B and stays low until the 
rising external field forces the wall out of the trap. [Note: 
The exchange and anisotropy energies plotted in Fig. 2(c) 
belong to the entire lattice and not just the domain wall. This 
is the reason why the exchange and anisotropy energies of 
the system, when the wall is located in either region A or C, 
add up to something greater than the 1.26 erg/cm2 value 
mentioned earlier. The extra energy is contained in region B 
and its borders with A and C.] Figure 3 shows the computed 
dependence of the critical field H, on the angle 19 of the easy 
axis within region B of the lattice. 
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FIG. 3. Computed coercivity vs the deviation angle 0 of the easy axis in 
region B. The largest coercivity is seen to occur at 0=74”. 
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FIG. 2. (a) Computed position of the wall center versus the magnitude of the 
external field. The assumed deviation angle @of the anisotropy axis from the 
2 axis on the sidewall is 70’. The wall center, originally placed at s = 14, 
moves to s=44 with a 0.1 kOe field and stays in this vicinity until the field 
reaches 8.8 kOe. It then jumps to s=96 and remains there afterwards. (b) 
Distribution of the Z component of magnetization M;=M, cos q!~ over the 
lattice, corresponding to several values of the external field. At H=O and 
H=8.8 kOe, the orientation of dipoles within region B  shows a clear tilt 
away from the 2 axis. (c) Anisotropy and exchange energies of the lattice vs 
time during the movement of the domain wall from region A to region C. 
The bottom curve shows the corresponding variation of the external field. As 
long as the wall resides in region A, its anisotropy and exchange energies 
are fairly constant and nearly identical. Both energies are lowered when the 
wall arrives in region B. With the wall approaching the boundary between B  
and C, the anisotropy energy reaches a maximum. As the wall moves into 
region C, the energies revert to their original values. 

Ill. CHANGE OF FILM THICKNESS IN THE REGION 
OF THE SIDEWALL 

A. Effective exchange field 

Consider two adjacent cells of the lattice in the region of 
the magnetic film where the thickness is varying. These cells 
have volumes d2h and d2ho, and magnetic moments m  and 
ma, as shown in Fig. 4. The exchange energy Exchg for this 
pair of dipoles in the discrete approximation is 

E xchg= 
I 

A,[(V~)2+(V~)2+(VY)21d~ 

=$ ( I-f$&)[y)d2 

=A,( 1 -ki.rit,)(h,+h), (1) 

where cr, p, y are the direction cosines of the magnetization 
and A denotes the unit vector. To derive an expression for the 
effective exchange field exerted on me by m, we keep m  
fixed and rotate ma by a small angle. Then the exchange 
energy of the system has a variation corresponding to the 
change of the angle between m  and m,. The energy differ- 
ence can be expressed in terms of either the effective field 
H eff, or the exchange stiffness coefficient: 
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site corresponds to x=0, and the film length 2L is equal to 100d. 

AE,c,,= - He,. Am,, = - HeR. A&,( M,h,d2) 

= -A,(rk.Arii,)(h+h,). 

The effective exchange field may thus be written as follows: 

(2) 

This equation gives the exchange field in terms of the satu- 
ration magnetization M, , local film thicknesses ho, h, and 
the lattice constant d. 

B. Simulation results 

Consider a magnetic film whose thickness changes 
smoothly from h , to h, over a finite distance 1, with a thick- 
ness gradient that we will denote by tan(a). Figure 4 shows 
schematically the cross section of such a film, and a typical 
distribution of magnetic dipole moments within this cross 
section. In our simulation, the thickness changes gradually 
from h,=150 A at s=35 to h2=450 A at s=65. Before 
s=35 and after s=65, the thickness is uniform. The angle (Y 
is equal to 45’. When a domain wall is placed at s = 12, it 
moves towards the comer at s =35 under an applied field of 
0.1 kOe. Upon increasing the strength of the field, the wall 
refuses to move by any significant amount until the field 
reaches a critical value, at which point the wall passes 
through the comer and moves all the way to s=95. Figure 
S(a) shows the computed position of the wall center as a 

function of the magnitude of the applied field. The critical 
field (i.e., the wall motion coercivity) is H,=3.2 kOe in this 
case. Figure 5(b) shows the shapes of the wall at several 
points during this simulation. The wall basically maintains 
its shape, even when it is pinned down at the comer of the 
sidewall. The above results can be understood by energy 
considerations. When the wall resides far from the comer, it 
is easy to make it move to the right. However, close to the 
kink, any slight movement to the right, will increase the wall 
energy because of an increase in the surface area of the wall. 
Thus, unless the applied field is strong enough, wall motion 
will not occur and the domain wall will remain pinned 
around the comer. Figure 5(c) shows the exchange and an- 
isotropy energies of the lattice at various wall positions. Both 
energies are seen to be constant when the wall is in regions 
with uniform thickness. In the region of varying thickness, 
the energies increase almost linearly with the wall position, 
but the two remain very close to each other at all times. 
Figure 6(a) shows the critical field versus the initial film 
thickness h, with the value of IY fixed at 45”. Figure 6(b) 
shows the critical field versus the angle (Y with the initial film 
thickness h, fixed at 150 A. [In both cases h, 
= hi + 1 *tan(a).] Based on these simulation results, we con- 
clude that smaller initial thickness h, and/or larger angle a, 
will be associated with larger values of coercivity. Roughly 
speaking, the initial film thickness h, is proportional to the 
height of a platform from which the wall will have to jump 
over the energy barrier, and the gradient of the film thick- 
ness, tan(o), is proportional to the height of the energy bar- 
rier itself. Therefore, it will be easier to release the wall from 
the pinning site when h, is large or when (Y is small. 

Using theoretical arguments, we derive an expression for 
the coercivity of wall motion in terms of hi and Q in the 
following subsection. In Fig. 6, the solid circles are the data 
points obtained by computer simulation, and the continuous 
curves are the theoretical estimates. When the applied field is 
well below the anisotropy field H, = 2 K,l M, , we found that 
the analytic results and the computer simulations agree quite 
well. 

C. Analytic derivation of coercivity 

The cross section of a magnetic film in the vicinity of a 
sidewall may resemble that shown in Fig. 4. Its length 2L is 
much greater than the width of the magnetic domain wall, 
46. The thickness of the film is a function of X, say, h(x). In 
this section, the zero point of the coordinate x is defined at 
the lower comer of the sidewall (in Fig. 4 this comer is 
located at lattice site s =35). In the interval [O,l] (correspond- 
ing to s ~[35,65] in Fig. 4), thickness varies continuously 
with a gradient of tan(a). h(x)= h, for x<O; and h(x)= h2 
for x > 1. For simplicity, we will assume that the width of the 
film in the Y direction (perpendicular to the plane of the 
figure) is unity. We calculate the total energy of the lattice in 
terms of the domain wall position a and the applied magnetic 
field H,,,. Under the condition of the applied field being 
much weaker than the anisotropy field H,, we can safely 
assume that the shape of the domain wall will remain intact 
as the wall assumes different positions under the influence of 
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a varying applied magnetic field. In our simulations, the ap- 
plied field is always less than the anisotropy field and also 
much less than the exchange field. As before, K, and A, 
denote the anisotropy constant and the exchange stiffness 
coefficient, respectively. Without an applied field, the angle 
$J of a domain wall centered at x = u can be expressed as 

q(x-a)=2 tan -I[ eipi y)], 

where &(A,lK,) 1’2 is the wall width parameter; the actual 
wall width being around 422 Assuming that the exchange and 
anisotropy energies are equal, the wall energy is going to be 
twice the anisotropy energy, namely, 

L 
E wan= % I 

sin2[q(x--a)]h(x)dx 
-L 

384 

I 

L-a 
= 2K, sin* qo(x)h(x+a)dx. 

-L-a 
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(4) 

The external field energy will be 

L Eext= -Hex&f, I cos[p(x-a)]h(x)dx 
-L 

I L-a 

= -Hex&f, cos cp(x)h(x+u)dx. 
-L-a 

(5) 

The total energy of the system is the sum of the above ener- 
gies, namely, Etofal=Ewall+Eext . Clearly Etotai is a function of 
the wall center position a and of the applied field H,,, . 

In accordance with the minimum energy principle, the 
wall will move to a new position if its total energy can be 
lowered relative to the current position. Therefore, the sign 
of the derivative of Et,,, with respect to the wall position a 
will carry information about the direction of wall motion: 
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sin*[cp(--L-a)]h(-L)-sin*[cp(L--a)] 

sin* q(.x)( dh(iJu))dx] 

-HeXIM, cos[cp(-L-a)]h(-L)-cos[cp(L 
1 

-a)lh(L)+ I ‘,“. cos p(x)( dh;;u))dx]. (6) 

For the sample thickness profile shown in Fig. 4, the deriva- 
tive of h(x) is readily obtained as follows: 
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coercivity (the maximum value of the critical field) is larger and the point at 
which the maximum value occurs is closer to the comer. Theoretically, when 
h,<6, the maximum value of the critical field will appear exactly at the 
comer. 

When the wall center is far from the boundaries of the film, 
we have 

L%a, cp(-L-a)=O, cp(L-a)=7r, 

h(-L)=hl, h(L)=h,. (8) 

Equation (6) may now be written 

d-%,1 
I 

-ail 
-=2K, tan(a) 

da 
sin* cp(x)dx- H,,,M, 

--a 

i I 
-a+1 

X h,+h2+tan(a) cos q(x)dx . (9) 
-a 1 

Setting the derivative equal to zero, yields the critical field as 
follows: 

H,(a) = 
2K, tan(a)JI~‘l sin* cp(x)dx 

M,[hl+h2+tan(a)~I;+’ cos q(x)dx] 

26 tan(a) 
h,+h,+tan(a)J-I;+’ cos q(x)dx 1 

1 1 
’ i 1  +exp[-(2a/S)]- 1 +exp[2(1-a)/S] ’ 

(10) 

Equation (10) gives the required field for moving the wall to 
the right in terms of the film’s geometric and magnetic pa- 
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rameters. When a is far from the comer, H, is close to zero 
(that is, the wall has not yet begun to feel the thickness 
variation). The maximum value of the critical field in Eq. 
(10) is the coercivity of this system. The point where H,(a) 
in Eq. (10) has its maximum always appears near the kink. 
Below, we consider two cases. 

1. Case 1 
The length of the gradient region I is much larger than 8. 

Since the position a at which H, attains its maximum will 
beof the order of S, the second exponential term in Eq. (10) 
can be ignored, and the term containing cos(+) can be ap- 
proximated as follows: 

I 

-a+1 
Ma) cos q(x)dx-tan(a)(l-2a)cos[q(-a+l)] 

--D 

=2a tan(a)-(h,-h,). (11) 

The critical field is thus written 

I 
’ M,[h,+a tan(a)] 1 l+exp(-2a/6) ’ (12) 

Figure 7 shows the dependence of H, on the wall center 
position a, as given be Eq. (12). This is also the equation that 
is used to obtain the continuous curves in Figs. 6(a) and 6(b). 

2. Case 2 
Consider a 90” comer. In this case the length 1 ap- 

proaches zero, and tan(a) goes to infinity, but the product of 
these terms remains constant 

l+O, a-+d2, 1 tan(a)+(h*-h,). 

Under these circumstances, Eq. (10) can be written as fol- 
lows: 

x exp( -2a/a)[exp(2Z/S)- I] 
[exp( -2alS)+ 11’ (2@ 

2Ku i 2 

= M,(h,+h,) 1 +cosh(a/4 
[I tan(a)] 

(13) 

Thus, when the wall is far from the comer, the hyperbolic 
term approaches zero, and a small field can push the wall to 
the right. The largest field is required when the wall center is 
at the kink itself, i.e., when a=O. To push the wall through 
the kink, H,,, must be greater than or equal to 
[2K,(h2-hl)]/[M,(h2+h,)l, which is proportional to the 
fractional step height, and is also less than the anisotropy 
field H,= 2K,lM,. 
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