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A planewave incident on an active etalon with net roundtrip gain may be expected to diverge in

field amplitude, yet applying the Fresnel formalism to Maxwell’s equations admits a convergent

solution. We describe this solution mathematically and provide additional insight by demonstrating

the response of such a cavity to an incident beam of light. Cavities with net roundtrip gain have

often been overlooked in the literature, and a clear understanding of their behavior yields insight to

negative refraction in nonmagnetic media, a duality between loss and gain, amplified total internal

reflection, and the negative-index lens. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4869578]

The Fresnel coefficients govern the reflection and trans-

mission of light for the simplest possible scenarios: at planar

interfaces between homogeneous media. Despite this sim-

plicity, some interesting solutions have been discovered only

recently, such as (1) the amplification of evanescent waves

in a passive, negative-index slab,1–5 and (2) a duality

between loss and gain leading to the localization of light in

both cases.6–10 In addition, controversy regarding the proper

choice of the wavevector in active media has persisted in

relation to the possibility of (3) negative refraction in non-

magnetic media,11–15 as well as (4) single-surface amplified

total internal reflection (TIR).16–21 It turns out that all four of

these cases share a common thread: the presence of a cavity

whose roundtrip gain exceeds the loss. In this Letter, we

explore in detail the Fresnel solution for such a cavity. We

find that its peculiar properties help us to understand the four

aforementioned phenomena and could also enable novel

device functionalities.

To begin, we establish a convention that allows us to

more clearly discuss the direction of energy flow. For the

single-surface problem shown in Fig. 1(a), the incident

wavevector in medium one is kR
1 ¼ kxx̂ þ kR

1zẑ, and the

reflected wavevector is kL
1 ¼ kxx̂ þ kL

1zẑ, where kL
1z ¼ �kR

1z.

The superscript R (L) indicates that the wave carries energy

to the right (left)—in other words that the time-averaged

z-component of the Poynting vector is positive (negative).

The real-valued component kx, once determined by the inci-

dent wave, is the same for all wavevectors in the system. For

the transmitted wavevector, the dispersion relation offers

two choices for k2z

k2z ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=cÞ2l2�2 � k2

x

q
; (1)

where x is the angular frequency, c is the speed of light in

vacuum, and l2 and �2 are the relative permeability and per-

mittivity. It is universally agreed that the correct choice for

k2z in the single-surface problem is kR
2z (i.e., that the transmit-

ted energy flows away from the interface), irrespective of the

material parameters or the nature of the incident wave,

except possibly in the case of amplified TIR, for which there

remains debate. Due to this controversy, let us postulate for

now that kR
2z is the correct choice in all cases, so that we can

unambiguously define the single-surface Fresnel reflection

and transmission coefficients

r‘m ¼
~k

R

‘z � ~k
R

mz

~k
R

‘z þ ~k
R

mz

; t‘m ¼
2~k

R

‘z

~k
R

‘z þ ~k
R

mz

; (2)

where we have generalized the result for incidence medium ‘
and transmission medium m. For s-polarization, we have

defined ~knz � knz=ln, while for p-polarization ~knz � knz=�n.

(In cases where both choices for k2z result in no energy flow

in the z-direction, such as for evanescent waves in a transpar-

ent medium, our prescription is to add a small amount of loss

to the slab which will unambiguously distinguish kR
2z and kL

2z,

then take the limit as the loss goes to zero.22)

We now consider the case of light incident on a cavity,

shown in Fig. 1(b). The total E-field resulting from an

s-polarized incident wave in medium one with amplitude ER
1

is given by

Eyðx; zÞ ¼

ER
1 expðikxxþ ikR

1zzÞ
þEL

1 expðikxxþ ikL
1zzÞ : z � 0

ER
2 expðikxxþ ikR

2zzÞ
þEL

2 expðikxxþ ikL
2zzÞ : 0 � z � d

ER
3 exp½ikxxþ ikR

3zðz� dÞ� : z � d;

8>>>>>>><
>>>>>>>:

(3)

where the time-dependence factor expð�ixtÞ has been omit-

ted. The most direct route to solve for the four unknown

wave amplitudes is to enforce Maxwell’s boundary condi-

tions at z¼ 0 and z¼ d, which yields four equations that can

be solved for the four unknowns. The resulting reflection

coefficient from the slab can be expressed in terms of the

single-surface Fresnel coefficients as

r � EL
1

ER
1

¼ r12 þ r23 expð2ikR
2zdÞ

1� � ; (4)
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� ¼ r21r23 expð2ikR
2zdÞ (5)

is referred to as the roundtrip coefficient; the amplitude of a

planewave circulating in the slab is multiplied by this factor

after each roundtrip in the absence of any sources outside the

slab. (Although we explicitly discuss s-polarized light, our

conclusions as well as Eqs. (4) and (5) hold for both polar-

ization states.) We emphasize that the reflection coefficient

given by Eq. (4) is a valid solution to Maxwell’s equations

for any value of �. The roundtrip coefficient � has an impor-

tant physical meaning, and intuitively one would expect

three different regimes of behavior when the magnitude of �
is less than, equal to, or greater than one. The case where

j�j < 1 governs passive slabs (in most but not all cases) and

sufficiently weakly amplifying slabs. When �¼ 1 the slab

behaves as a laser and emits light even in the absence of an

incident wave, which manifests itself mathematically as an

infinitely large reflection amplitude. The case where j�j > 1,

however, is rarely openly acknowledged.6,15,17

Probably the reason for the neglect of the j�j > 1

steady-state solution is the seemingly intuitive assumption

that the fields should diverge when there is net roundtrip

gain. (See the supplemental material for a discussion of gain

saturation and lasing.22) Unfortunately, this incorrect

assumption seems to be reinforced by a second well-known

solution method for the reflection coefficient that decom-

poses the reflected wave amplitude EL
1 into a sum over partial

waves, yielding the reflection coefficient

r ¼ r12 þ t12t21r23 expð2ikR
2zdÞ

X1
m¼0

�m: (6)

Heuristically, the first term r12 (hereinafter referred to as the

“specular” partial wave) of Eq. (6) results from the

single-surface reflection of the incident wave at the 1–2 inter-

face, and the geometric series accounts for the contributions to

the reflected wave following multiple roundtrips within the

slab. When j�j < 1, the geometric series in Eq. (6) converges

to ð1� �Þ�1
, giving the same result as found by matching the

boundary conditions in Eq. (4). When j�j > 1, however, the

geometric series diverges and the partial wave method suggests

that the reflection coefficient is infinite. Intuitively, this diver-

gence seems reasonable, since we expect any light that couples

into a slab with j�j > 1 to be amplified after each roundtrip,

and therefore grow without bound. Nevertheless, Eq. (4) yields

a finite reflection coefficient even when j�j > 1, so how can

we reconcile these two very different solutions?

In fact, the usual heuristic interpretation of the partial

wave picture does not tell the whole story, but with a slight

modification the partial wave method can be used to find the

j�j > 1 convergent solution. First, one can check that the

reflection coefficient given by Eq. (4) is invariant under the

transformation kR
2z! kL

2z, provided r23 6¼ 0. (This can be

interpreted simply as a relabeling of the waves ER
2 ! EL

2 in

Eq. (3) that does not affect the final result.) Applying this

same transformation to the partial wave sum of Eq. (6),17 we

can express the reflection coefficient as

r ¼ r012 þ t012t021r023 expð2ikL
2zdÞ

X1
m¼0

�0m; (7)

where the prime indicates the substitution kR
2z ! kL

2z. Because

the new roundtrip coefficient, �0 ¼ r021r023 expð2ikL
2zdÞ, is

equal to ��1, in cases where j�j > 1 the primed partial wave

sum of Eq. (7) will converge to the reflection coefficient of

Eq. (4). (This duality between � and ��1 provides a simple

mathematical explanation for the loss/gain duality observed

by others.6–10)

The physical implications of the substitution kR
2z ! kL

2z

in the partial wave sum can best be seen by examining the

behavior of a “finite-diameter” beam of light incident

obliquely on the slab. By numerically superposing a finite

number of planewave solutions to Eq. (3)22 with appropriate

amplitudes and incidence angles in the range 27:47� < h
< 32:53�, we create a Gaussian (to within the sampling accu-

racy) beam incident on the slab at 30� with a full-width at

half-maximum (FWHM) beam-diameter of 13.3 lm. All

media are nonmagnetic, and we choose �1 ¼ �3 ¼ 2:25 and

the slab to be an amplifying medium with �2 ¼ 1� 0:01i.
The free-space wavelength of the beam is ko ¼ 1 lm. We

can examine the transition from j�j < 1 to j�j > 1 simply by

varying d, since both jr21j and jr23j are less than one (and in-

dependent of d), whereas jexpð2ikR
2zdÞj (and hence �)

increases monotonically with d (because kR
2z has a negative

imaginary part). A plot of the field Ey(x,z) at one instant of

time is shown in Fig. 2(a) for d¼ 19 lm, which was chosen

so that j�j is slightly less than one for all constituent plane-

waves of the beam (0:46 < j�j < 0:99). The arrows overly-

ing the plot point in the direction of the time-averaged

Poynting vector within their vicinity, indicating the direction

of energy flow in the system, and the incident beam is

uniquely identified by the white arrow. The beam behaves as

we expect it to: the incident beam strikes the slab near

(x¼ 0, z¼ 0), giving rise to a specularly reflected beam as

FIG. 1. Geometry of the (a) single-

surface and (b) cavity problems. All

media are infinite in the x and y-direc-

tions. The arrows denote the wavevec-

tors present in each layer.
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well as a refracted beam that “zig-zags” up the slab, which

in turn generates a reflected beam in medium one each time

it strikes the 2-1 interface. (The field amplitude is plotted on

a linear scale, and so the incident beam as well as the specu-

larly reflected beam appear faint relative to the subsequently

amplified portions of the beam.) Each of these reflected

beams can intuitively be associated with a term of the partial

wave expansion of Eq. (6)—either the specular term or the

mth term of the geometric series.

In Fig. 2(b), all parameters are kept the same except the

slab thickness is increased to d¼ 28 lm, resulting in j�j > 1

for all constituent planewaves of the Gaussian beam

(1:01 < j�j < 2:58). Based solely on the plot of the field am-

plitude and not on the direction of energy flow indicated by

the arrows, it may appear that the incident beam strikes the

interface and negatively refracts in the slab, then zig-zags

downwards in the �x̂ direction, giving rise to many reflected

beams in medium one (and transmitted beams in medium

three) which emanate from points on the slab with x< 0.

Such an explanation was offered for simulations similar to

ours14,15 to attempt to justify negative refraction in an active,

nonmagnetic medium. However, by analyzing the Poynting

vector we see that the energy in the beam zig-zags up the

slab, so this phenomenon is distinct from negative refraction,

despite the similarity in the positions of the reflected and

transmitted beams. A video of a Gaussian pulse of light with a

temporal FWHM of 50 fs and all other parameters identical to

those of Fig. 2(b) more vividly illustrates that energy flows in

theþ x-direction. (The video plots the pulse intensity–not

amplitude–on a logarithmic scale covering three decades.) We

will refer to the field in the slab at x< 0 as the “pre-excitation,”

so-called because it occurs before the central lobe of the inci-

dent beam arrives at the slab. Each reflected beam in Fig. 2(b)

can be associated either with the specular term r012 or with the

mth term of the primed partial wave expansion in Eq. (7).

The Fresnel solution for a slab with j�j > 1 is a steady-

state harmonic solution, in the sense that if the field distribu-

tion presented in Fig. 2(b) exists at time to, then as time is

evolved forward the field at each point in space will vary

harmonically with frequency x. The intent of this Letter is

not to investigate the causal evolution of the pre-excitation,

beginning with the time the excitation source is turned on.

We also recognize that the experimental verification of this

potential phenomenon will be complicated by factors not

included in the Fresnel formalism, such as spontaneous emis-

sion, that could lead to instabilities or self-lasing.

Experimental work already done on the amplification of

evanescent waves16,23,24 (a regime for which j�j > 1), how-

ever, has not suffered from either of these problems. We

note also that the Fresnel formalism, by implicitly beginning

with the time-harmonic subset of Maxwell’s equations, can

only elucidate the non-divergent solutions to the full

time-dependent equations. There can certainly exist diver-

gent solutions, as demonstrated by finite-element simulations

of a wave with a well-defined start-time incident normally

on a slab with j�j > 1.6

Rather, we take the pre-excitation behavior demon-

strated in Fig. 2(b) as the direct, logical, and inescapable

consequence of the Fresnel formalism applied to Maxwell’s

equations for situations in which j�j > 1. This solution has

surfaced in the literature,1–21 sometimes knowingly but often

not, but its peculiar properties have not been sufficiently

appreciated. Our intent is merely to explore these properties

and explain their relevance to some persistent controversies.

We observe that the specular reflection is given by r12

when j�j < 1 and r012 when j�j > 1. Since jr12j < 1 (in most

cases of practical interest) and r012 ¼ 1=r12, this means that

jr012j > 1, and so the primed partial wave expansion mathe-

matically predicts the amplification of the specularly

reflected beam when j�j > 1. From Fig. 2(b), we see that this

amplification occurs because the specular beam receives

energy from the transmission of the pre-excited field through

the 2-1 interface. Another noteworthy feature of this solution

is that when j�j � 1 (achieved either by increasing the thick-

ness or gain of the slab, or the incidence angle), the

left-propagating wave amplitude E2L becomes much larger

than E2R. This dominance of the left-propagating wave is of

course a direct (although certainly peculiar) result of the mul-

tiple reflections of the pre-excitation at the front and back fac-

ets of the slab,3 without which only the right-propagating

wave E2R would exist in medium two.

It turns out that TIR from an amplifying slab is well

within the regime j�j � 1 (for any reasonable thickness d).

As h surpasses the critical angle for TIR, j�j quickly

FIG. 2. Plots of the field Ey(x,z) at one instant of time for a Gaussian beam

(indicated with the white arrow) incident on an amplifying slab for which

(a) j�j < 1ðd ¼ 19 lmÞ and (b) j�j > 1 ðd ¼ 28 lmÞ. The black dot indicates

the origin of the coordinate system. For the same material parameters as (b),

an incident pulse of light more vividly illustrates the peculiar behavior.

(Multimedia view) [URL: http://dx.doi.org/10.1063/1.4869578.1]
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becomes extremely large due to the negatively increasing

ImðkR
2zÞ. (For the parameters used in Fig. 2(b), the critical

angle is hc ¼ 41:8�. For h ¼ 41�; j�j ¼ 9:34	 103, and for

h ¼ 42�; j�j ¼ 1:40	 1015.) Therefore, only the left-

propagating wave E2L exists with any appreciable amplitude

in the slab, and we emphasize again that this results directly

from the multiple reflections of the pre-excitation at both

slab facets. Some have argued that even if medium two is

semi-infinite, above the critical angle the incident wave

excites the wavevector kL
2z in the transmission medium rather

than the usual kR
2z, resulting in the reflection coefficient r012

and an accompanying amplified specular reflection.16–19,21 It

seems to us, however, that since the existing experimental

results16,24 can be explained by the slab picture without

recourse to the single-surface problem, there is no need for a

special TIR-exception to the postulate that kR
2z is the trans-

mitted wavevector in the single-surface problem.

In the case of the negative-index lens1 (where media one

and three are vacuum and medium two has �2 ¼ l2 ¼ �1),

every incident evanescent wave (kx > x=c), for both s

and p-polarization, excites a lossless surface plasmon polari-

ton mode4 on the 1–2 and 2–3 interfaces, resulting in

r21 ¼ r23 ¼ 1 and hence �¼1 (despite being a passive

medium). Therefore, the convergent solution found by apply-

ing the Fresnel formalism to this problem1,2 is the one

described by the primed geometric series in Eq. (7) with

�0 ¼ 1=� ¼ 0. The result is that only the wavevector kL
2z

exists in the slab, which describes an evanescent wave that is

amplified with increasing z, and therefore, enables the

“perfect lensing” action. In this case, the reflection coeffi-

cient from the slab is given by r ¼ r012 ¼ 0, and our argument

indicates that this is the result of multiple reflections within

the slab,3 not because the incident evanescent wave is

impedance-matched to the slab.2,5 If loss is introduced to the

slab, r21 and r23 become finite but the lens still works well if

j�j � 1; however, even small losses lead to j�j < 1, causing

the decaying wave kR
2z to dominate the amplified wave kL

2z,

thereby spoiling the perfect lens.4,5

In conclusion, we have shown that the convergence of

the Fresnel solution for a cavity with net roundtrip gain relies

on the existence of the “pre-excited” field, which is a pecu-

liar manifestation of the geometric partial wave series. By

elucidating this counterintuitive phenomenon, we hope to

have provided a useful alternative perspective for under-

standing amplified total internal reflection and the negative-

index lens. We have also shown a positive-index slab with

net roundtrip gain does not negatively refract–however,

because the behavior mimics negative refraction insofar as

the positions of the reflected and transmitted beams are con-

cerned, the slab could substitute as a negative-index material

in certain applications.

The pulse simulation was run on the Odyssey cluster

supported by the Harvard FAS Research Computing Group.
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