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Certain computational aspects of vector diffraction problems
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Fourier decomposition of a given amplitude distribution into plane waves and the subsequent superposition of these
waves after propagation is a powerful yet simple approach to diffraction problems. Many vector diffraction
problems can be formulated in this way, and the classical results are usually the consequence of a stationary-phase
approximation to the resulting integrals. For situations in which the approximation does not apply, a factorization
technique is developed that substantially reduces the required computational resources. Numerical computations
are based on the fast-Fourier-transform algorithm, and the practicality of this method is shown with several
examples.

1. INTRODUCTION

A. Background
The essence of diffraction theory is Huygens's principle,
which states that every point on a given wave front can be
treated as a source of radiation, emanating spherical wave-
lets that can be superimposed later to yield the light-ampli-
tude distribution. A slight variation on this theme is the
view that the wave front can be decomposed into a set of
plane waves that propagate independently through space
and that their superposition is the field at any given point.14
The two views can be shown to be identical and to lead to the
same results, although the latter approach is mathematically
more convenient. The Fourier-transform technique is the
natural vehicle for decomposition into and superposition of
plane waves, and, in fact, the majority of problems in the
classical theory of diffraction can be reduced to a pair of
Fourier- and inverse Fourier-transform integrals. The
trouble, from a computational point of view, is that usually
the functions involved in these transformations are highly
oscillatory and consequently require a large number of sam-
ples for proper representation. It turns out, however, that
in many problems of practical interest one or the other of the
Fourier integrals can be approximated quite accurately with
the stationary-phase technique. 56 For instance, in the
problem of far-field (Fraunhofer) diffraction from an aper-
ture, the stationary-phase approximation applies to the sec-
ond (superposition) integral, whereas in the case of diffrac-
tion from a lens the approximation is used to eliminate the
first (decomposition) integral. In both cases the remaining
integral can then be computed efficiently with the fast-
Fourier-transform (FFT) algorithm.

Like any approximation, the stationary-phase technique
is valid only over a certain range of the parameters involved.
When the parameter set happens to be outside the proper
range, one goes back to evaluate the original Fourier inte-
grals more accurately. Near-field (Fresnel) diffraction from
an aperture is but one representative of problems in which
the stationary-phase approximation fails. Another example
is diffraction from a lens with a small numerical aperture. It
is well-known that at small numerical apertures the distri-
bution becomes asymmetric with respect to the focal point

and the maximum intensity occurs at a point that is some-
what closer to the lens than the point of geometric focus.7 -9

This contrasts sharply with the prediction of symmetry by
theories that are based on the stationary-phase approxima-
tion. 2

In this paper a factorization technique is presented that
enables one to compute the Fourier integrals of diffraction
theory more efficiently. The price of the reduction in the
required number of samples (made possible by factoriza-
tion) is an extra Fourier transform: instead of transforming
a large array twice, one must now transform a smaller array
three times. The obvious advantage of factorization is
therefore the reduced level of computational resources
(memory and CPU time) that a given problem requires. It is
important to emphasize that factorization does not elimi-
nate the need for the stationary-phase approximation
(wherever it legitimately applies), nor does it further simpli-
fy problems in which the original Fourier and inverse Fouri-
er integrals are readily computable. Simply stated, the fac-
torization technique covers the gray boundary area between
these two regions, where approximation is inaccurate and
direct computation is costly.

The organization of the paper is as follows. In the re-
mainder of this section the notation is introduced, and the
background is provided for the problem formulation. In
Section 2, we discuss the basic equations of vector diffrac-
tion theory and describe the factorization technique in de-
tail. In Section 3 factorization is applied to problems of
diffraction in the presence of a lens. The important case of a
spherical lens is treated in detail in Subsections 3.A and 3.B,
and the (rather exotic) cases of an astigmatic lens and a ring
lens are treated in Subsections 3.C-3.E. In Section 4 the
results are given for numerical computations based on the
various methods described in this paper. The results are
intended to give an appreciation for the range of applicabil-
ity of each technique.

B. Preliminaries
The notation and some elementary aspects of the formalism
used throughout the paper are as follows'0:

1. t(x, y) is a two-dimensional function defined on the xy
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plane. When the x axis is normalized by a and the y axis is
normalized by b, we define new coordinates x and y, such
that x = ax and y = by, and represent the function in this
new coordinate system as t(ax, by).

2. The Fourier transform of t(x, y) is T(u, v) and is
written

T(u, v) = 5ft(x, y)) = J J t(x, y)exp[-i27r(xu + yv)]dxdy.

(1.1)

If x and y are normalized by a and b, respectively, the
Fourier transform of the scaled function is

1 T(u ) = YIt(ax, by)} = J J t(ax, by)

X exp[-i2ir(xu + yv)]dxdy. (1.2)

3. The inverse transform of T(u, v) is t(x, y) as follows:

t(x, y) = 5r-P'T(u, v)} = J T(u, v)exp[i2ir(xu + yv)]dudv.

(1.3)

4. The discrete array used for numerical computations is
initially in the xy plane, where x = x/X and y = y/X are

dimensionless coordinates; i.e., x and y are in units of the
wavelength X. The length of the array in the x direction is
Lmax, and the number of pixels in this dimension is Nmax.
The corresponding parameters along the y axis are Lmay and
Nmay. Because the arrays are transformed by the FFT algo-
rithm, it is preferable that Nmax and Nmay be powers of 2.
The array generally is centered at the origin, and the (I, J)
pixel represents the point x = (I -Nmidx - 1)Lmax/Nmax, y =
(J - Nmidy - 1)Lmay/Nmay, where Nmidx = Nmax/2 and Nmidy

= Nmay/2. The spacing between nearest-neighbor pixels is
Ax = Lmax/Nmax and Ay = Lmay/Nmay. For the most part in

this paper we have square lattices with Lmay = Lmax, Nmay =

Nmax, and Ay = Ax. Thus, when there is no danger of confu-
sion, we shall express the relationships in terms of Lmax,
Nmax, and A, with the understanding that similar relation-
ships exist for the y direction.

5. To normalize the x axis by a we divide Lmax by a.
Thus, if t(x, y) is represented by an Nmax X Nmay array on an
Lmax X Lmay rectangle, its scaled version t(ax, by) has the
same pixels but is on a rectangle of dimensions (Lmax/a) X
(Lmaylb).

6. The discrete Fourier transform of an Lmax X Lmay
array with Nmax X Nmay pixels is another array with the same
number of pixels but with new dimensions Lmax X Lmay In

general, Lmax = Nmax/Lmax and Lmay = Nmay/Lmay.

7. When a linearly polarized plane wave traveling along
the z axis encounters a prism, as shown in Fig. 1, its direction
of propagation changes to & = (x, cry, r). The effect of
refraction on the polarization vector is to keep the S compo-
nent unchanged but to reorient the P component such that it
becomes perpendicular to v. The new polarization compo-
nents Ix, %ky, and I' can thus be calculated for any incident
polarization by simple geometric considerations. Table 1
shows the results for x-polarized (top three rows) and y-
polarized (bottom three rows) incident beams. Notice that
a is a unit vector and thus that a, = (1 - a,2 - ¢Y2)1/2-

8. A coherent point source located at the origin gives rise
to a spherical wave front. The amplitude distribution in a

Incident
Beam

A
or(0,0,1) Diffracted

Beam

A

Prism r=(o U )
(Diffraction Grating) x Y z

Fig. 1. Prism as a diffraction grating. A plane, linearly polarized
incident beam is diffracted into a plane wave propagating along a =

(a., 0
y, a.). The relationship between the incident and the diffract-

ed polarizations is summarized in Table 1.

Table 1. Components of the Polarization Vector of a
Plane Wavea Propagating along the Unit Vector a =

(cax , ¢ u)

Component Expression

Tyx _ fi Y

tay2
lkxx 1-- 1 + a,

a2

1 + az

tJ-xz f

a The beam is obtained by the refraction (through a properly oriented
prism) of a linearly polarized wave propagating along ao = (0,0, 1). T,, is the
1 component of the refracted beam when the (unit-amplitude) incident beam
is polarized along a.

plane perpendicular to the positive z axis is said to have a
curvature C = 1/z. The curvature phase factor is given by

A(x, y) = exp{i Xc [1 + C2(X2 + 2)1/2}. (1.4)

If the coordinates are normalized by the wavelength such
that x = x, y = y/X, and z = z/X, then we define the
normalized curvature C = XC in order to eliminate X from
Eq. (1.4). In this notation a positive curvature represents a
diverging beam centered to the left of the xy plane, and a
negative curvature corresponds to a converging beam toward
a point to the right of the xy plane.

2. PROPAGATION IN FREE SPACE

A. Direct Application of Fresnel's Formula
It is well known that an amplitude distribution t(x, y) in the
xy plane can be considered the superposition of plane waves
propagating along the unit vectors 8- = [a1 x, y, (1 - ¢x2 -

cry2)1/
2
]. The complex amplitude of each plane wave is relat-

ed to the Fourier transform of t(x, y) as follows':

A 2 T(_a _)= ylt(XX Xy)j ax2 + <1 (2
X X 0 otherwise

Here x = Xx, y = Xy, and 5i{- is the two-dimensional Fourier-
transform operator.
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At a distance z from the origin the distribution is the
superposition of the above plane waves, each multiplied by a
proper phase factor in order to represent different propaga-
tion distances. Let us assume that each plane wave origi-
nates at the z = 0 plane by going through a properly oriented
prism; then, if the incident beam is polarized along the a axis
(a is either x or y), the contribution of the wave traveling
along to the final polarization along a (3 is x or y or z) will
be Tcn(ax, y) as given in Table 1. Thus the amplitude
distribution of d-polarized light at z = Xz isI°

Ta1 (Xx, Xy, Xz) = 5P1{X-2T (, ) 'Fa:(flx, 0)

X exp[i2rz(1 - X2 -y2)/2]}. (2.2)

The Fourier-transform pair of Eqs. (2.1) and (2.2) consti-
tutes the basic formula for propagation in the Fresnel re-
gime. For numerical computations one needs a two-dimen-
sional array to represent the initial and final distributions,
as well as the intermediate functions. Let the linear dimen-
sion of this array (after normalization by X) be Lmax, and let
Nmax represent the number of samples (pixels) in this di-
mension. The sample spacing A must be small enough in
order to represent properly the fine features of t(Xx, y).
For instance, if the incident beam is uniform within a circu-
lar aperture of radius R = XR, then A < R/10 is an appropri-
ate choice. On the other hand, if the incident beam has a
curvature C, as in Eq. (1.4), then the fastest oscillations of
the phase factor occur in the vicinity of the aperture edge,
where the radial spacing between successive peaks (or val-
leys) is -(1 + C2R2)1/2/ICIR. Consequently, A must satisfy
the restriction

A • min IR (1 + C2 R2)1/2 1A-<,~1 2ICIR J
(2.3)

After the first transformation, the spacing between near-
est-neighbor elements becomes = 1/Lmax. The proper
choice of , now depends on the functions that appear on the
right-hand side of Eq. (2.2). The smallest features of
* X 2T(ax/X, a,/X) in the axa, plane occur on a scale of (R/X)-',
where as before, R is the largest linear dimension of the
aperture distribution t(x, y). Thus 1 < (1OR)-l is a good
choice as far as T(arJX, aoy/X) is concerned. The second
function, T'{(axx, ay), is relatively smooth, and we need not
be concerned about it at this point. The third function is an
exponential phase factor that oscillates with increasing fre-
quency as one moves away from the origin in the axay plane.
At a distance amax from the origin, the radial separation
between successive peaks of this function is -(1 - lax)1/2/

(Zamax). Consequently, Z, must be small enough to sample
these oscillations properly. amax itself depends on the spa-
tial variations of t(x, y); in fact, it is the largest spatial
frequency contained in t(Xx, Xy). For the preceding exam-
ple,

or - ICR 1 24
Lmax = (1 + C2R2)1/ 2 2R (2.4)

Since , is the inverse of Lmax, these considerations yield

Lmax > rax~lOR (1a2zLamax
Lma max j10R, -_ 2

1/2 

(1 - max) 
(2.5)

Relations (2.3) and (2.5) and Eq. (2.4) may be used for
selecting Lmax and Nmax for numerical computations. Rela-
tion (2.5) is general and applies to all cases of Fresnel propa-
gation, whereas relation (2.3) and Eq. (2.4) correspond to
apertures illuminated with spherical waves only.

B. Extending the Range of Fresnel's Formula
As can be seen from relation (2.5), when the spatial varia-
tions of t(Xx, Xy) are rapid, (i.e., when 0-max is large) and/or
when z is large, numerical computations may become im-
practical. One way around the problem is to separate the
oscillating terms from Eq. (2.2). To this end, we define
G(ax, a,) as

G(ax, ay) = Ž 2 T(ax/X, aY/X)Ta,,(ax, y)

X expji2irz[(1 - ax2 ay ) 2 + 1/2n(a 1
2 + Y)

(2.6)

and rewrite Eq. (2.2) as

ta#(Xx, Xy, z) = WITFG(ax, ay)exp[-i7rnlZ(ax2 + aY2)]}. (2.7)

Here is a parameter that can be optimized to reduce the
oscillations of the phase factor in Eq. (2.6). A method of
finding the optimum is given in Appendix A. Since the
inverse transform of the product of two functions is the
convolution of individual inverse transforms, Eq. (2.7) is
written

Fa1 (Xx, Xy, Xz) = J J -'1G(ax ay) (l)

X expi? [(x - x')2 + (y - y/)2]}dx'dy'. (2.8)

Let us define H(x, y) as follows:

H(x, y) = -inz exp i- (x 2
+ y2)] 5( 1

{G(ax ,)I;
t h e n , w h e n t h e o r m a i z v a i b e I / f z a d Y = y i(2.9)

then, when the normalized variables X = x/nz and Y = y/-qz
are used, Eq. (2.8) becomes

ta 3(Xx, Xy, Xz) = exp (X2 + Y2)5IiH(-qzX, njzY)I. (2.10)

We summarize the results by outlining the steps in the
computation of Fresnel propagation with an extended range:

1. Calculate X- 2T(ax/X, aoY/X) from Eq. (2.1). As before,
the sample spacing A depends on the spatial variations of
t(Xx, Xy), and, for the simple example of an aperture with a
spherical incident wave front, it is given by relation (2.3).

2. Calculate G(ax, ay) from Eq. (2.6). The spacing in
the aaY plane is the inverse of Lmax. To choose the correct
Lmax, one needs to know the maximum frequency max of the
input distribution. [max for the case of an aperture with a
spherical incident wave front is given in Eq. (2.4).] Once
0-max is determined, one calculates opt and Czmax by using the
procedure outlined in Appendix A. The same consider-
ations that led to relation (2.5) now yield
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Lmax > maxtlOR, 2ZC(maxl. (2.11)

3. Calculate H(x, y) from Eq. (2.9). The largest distance
from the origin of the xy plane that is now significant is R +
ZCLmax At this distance the separation between successive
peaks of the exponential phase factor in Eq. (2.9) poses
another restriction on A as follows:

A < 77Z *(2.12)
2(R + zClmax)

Note that Eq. (2.12) must be satisfied in addition to Eq.
(2.3).

4. Normalize the axes xy of the domain of H(x, y) in
order to obtain H(r7zX, -qzY). This is done simply by divid-
ing Lma and Lma, by Lz.

5. Calculate the final distribution according to Eq.
(2.10). The separation between neighboring elements in the
final array is A = qz/Lma. because of the normalization in the
preceding step. The length of the final array is thus

t3(XXs Xy, XZ) = -(i/z)exp[i27rz(1 + 2 )

X T',0p(aX0, aY0 )(1 - aX02
- a,0Y

2)[X- 2 T(a 0/X, ay0 /X)], (2.17)

which is the standard expression for the far-field (Fraunho-
fer) diffraction.1 ' Note that the exponential term is a curva-
ture phase factor with a radius of curvature z.

For numerical computations the sampling interval must
be sufficiently small to represent the fine features of the
incident waveform. The restriction on A is thus similar to
that for the direct Fresnel method, and, when the aperture
radius is R and the incident beam has a curvature C, the
upper limit of A is given by relation (2.3). The lower bound
on Lmax, however, is different here; the only requirement is
for sufficient resolution in the output plane, namely,

Lma 1OR. (2.18)

Since a1 0 and ao0 are the angular coordinates of the observa-
tion point (x, y, z), a nonlinear scaling must be applied to the
function in Eq. (2.17). The final array dimension is

Lmax = ?lzNmax/Lmax.

The phase factor in Eq. (2.10) may be treated as a curvature
C = (z)-', provided that C is sufficiently small.

C. Fresnel's Formula and the Stationary-Phase
Approximation
When z is sufficiently large, the inverse transform in Eq.
(2.2) can be evaluated with the stationary-phase approxima-
tion. The exponent of the integrand is

W(a 1, ay) = xaX + yaY + z(1 - aX2 - aY2)1/2, (2.14)

which has a stationary point at

a0X = X/(X 2 + y2 + z2)1/2,

-Y = y/(x 2 + 2 + z2)1/2.

(2.19)Lmax = L
max

3. DIFFRACTION IN THE PRESENCE OF A LENS

A. Spherical Lens
Consider a spherical lens with a focal length f and a numeri-
cal aperture NA. Let the lens center be located at (xc, Yc),
and let the amplitude distribution in the plane of the en-
trance pupil be To(x, y). The distribution at the exit pupil is
then

t(x, y) = 70(x, y)exp{-i pi [f2 + (X - Xc)2 + ( - y)2]1/2}.

(2.15a) (3.1a)

(2.15b) io(x, y) is a scaled version of ro(x, y) as follows:

{[1I + (X X) I ( X) + ( )1 + (X -X) + ( )2
1i 0(x, y) = 70{ [ + (X 7 7 Yco)2 ]l/2 + y - YC + J // (3.lb)

The Taylor-series expansion of W(ax, ay) around the station-
ary point is

W(a 1, a,) = (x2 + y2 + z2)/2f1 _ /2[1 + (x/z)2 ](a1 -axO)2

- (xy/z2 )(,x - a 0x)(ay -ayo)

- 1/2[1 + (y/Z) 2](aY - a-,0)2 ) +.... (2.16)

After replacing W(ax, ay) in Eq. (2.2) and completing the
stationary-phase method, one obtains

The scaling is in keeping with Abbe's sine condition for an
aplanatic lens.5 In addition, To(x, y) may include any aber-
rations introduced into the beam while it is traveling be-
tween the entrance and the exit pupils.

Although the distribution in Eq. (3.1) can be propagated
by using Fresnel's formula, the oscillatory nature of the
phase factor at high numerical apertures will require a large
number of samples. To avoid this problem, a factorization
similar to that used in Section 2 is proposed. Here we define
the function 1-(x, y) as follows:

(2.13)

.
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T (X, Y) = [(x y x )2
(. X 1 > f2 2 f2 t r N

O [(X- XC)2 + ( - y)2]1/2 > f tan[arcsin(NA)]

In this equation n is a parameter that can be optimized for a
minimum number of samples in the xy plane. Equation
(3.1a) then becomes

t(x, y) = T(X, y)expf-i 727 [(X Xe)
2

+ (y - y)2] (3-3)
I - Xf (3.3

Let us now define f = fiX, X, = nqx/f, Y, = yc/f, X = qx/f,
and Y = n1y/f; then Eqs. (3.2) and (3.3) are written

T(LX, Y) = To (LX, Y)exp( -i2rf

1 X(X - X)2 + (y y (31./2
[l ~~~ ~~12 

t(-X,-LY) = T(-XLY)

X exp -[(X- X) 2 + (Y-Y) ]}-

(3.5)

The first step in propagating the distribution in Eq. (3.5)
beyond the lens is finding its Fourier transform according to
Eq. (2.1). However, Eq. (3.5) is the product of two func-
tions, and its Fourier transform is consequently a convolu-
tion as follows:

(n)2 T("u "v)= - n - f 5rf(f X f Y)}

X expj-i2zr[X(u - u') + Yc(v - )]}

X exp{ i71 [(U - U')2 + ( - V/)2i}du'dv'.

(3.6)

Let a. = nu/f and a, = nv/f and rewrite Eq. (3.6) as follows:

\-2T (X, aY) = if exp[7 1f (X2 + ay,2) 2 (ax + Y)]

xJ>1,z{r(Lx )}

X exp{ f[(U' + x) ( )1]}

X exp[-i27r(u'a 1 + v'aY)Idu'dv'. (3.7)

Again, let xe = xe/X and Y = y/X, and define h(u, ) as

h(u, i) = -f L W7 [(u + Xe)2 + ( + Yc)2]}

X {T(-X,4 Y)}; (3.8)

then Eq. (3.7) becomes

x-2T(ax aY) = exp{i27{[f (ax2 + aY2 ) - ax-Yay]}

X 911h(u, u)}. (3.9)

When Eq. (3.9) is substituted into Eq. (2.2) and g(ax, ay) is
defined as

g(ax, ay) = exp [i2r(z - f)(1 - ax2 -Y2)/2

X exp{i27rf{(1 - aX2 - aY2) 1/2 + I (ax2 + aY2)]}

X exp[-i2ir(xcax + yca)]Ih(u, v),

the final distribution can be written as

t"A(Xx, xy, Xz) = 71'{'af(ax, ay)g(a, ay)j.

(3.10)

(3.11)

We summarize the results of this section in the following
step-by-step method of calculating diffraction patterns for a
lens:

1. Compute r(x, y) from Eq. (3.2). The optimum n is
obtained by the method described in Appendix B with 01 = 0
and 02 = arcsin(NA). Since the maximum spatial frequency
of the exponential phase factor in Eq. (3.2) is (r&max, the
restriction on the sample spacing A at the aperture is

r\<mifR '211}A~mi I-, (3.12)

Here R = f tan[arcsin(NA)], and 6max, a function of NA, is
given in Fig. 18 of Appendix B.

2. Normalize the coordinates xy by dividing Lmax and
Lmay by f/7n; then calculate the Fourier transform of 7(x, y) in
the new (normalized) coordinates XY. Multiply the result
by the appropriate coefficient as in Eq. (3.8) to obtain h(u,
v). The extent of the function h(u, v) in the uv plane is

Omax= (Omax +2R (3.13)

The phase factor in Eq. (3.8) has a maximum frequency of
(ama + r,)n/f, where rc = (C2 + yc2)1/2 is the radial distance
of the lens center from the optical axis. Thus nLmax/f (the
normalized Lmax of the XY domain) must be greater than
twice this frequency, namely,

Lmax > maxf10R (mx+ 2R) + 2rl- (3.14)n7 2R /j

(3.2)
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3. Calculate g(a1, ,) from Eq. (3.10). It turns out that
cOmax in Appendixes A and B at optimum nq are related by
6bmax(A) = (;)max(B)In(B), while (A)n (B) = 1. The maximum
frequency in the phase factor of Eq. (3.10) near the focus is
therefore (foma/Xn) + r However, the coordinates have
been normalized by f/n; therefore

A 1 . (3.15)

2('max +)

Thus, when z f, relations (3.12) and (3.15) combine to yield

(3.16)Lmax 1 0 R
N-S.m 10'

4. Calculate the final distribution from Eq. (3.11). The
final array length will be

Lma = ma (3.17)
nLmax

B. Spherical Lens and the Stationary-Phase
Approximation
With increasing numerical aperture and/or focal length, the
method described in Subsection 3.A becomes impractical in
terms of computer time and memory requirements. In this
regime, however, the stationary-phase approximation ap-
plies, and we can directly calculate the Fourier transform of
t(x, y) in Eq. (3.1a). Defining X = x/f, Y = y/f, Xe = xc/f,
and Ye = ye/f, we write

X-2T (.x, Cy) = f2 j | T(fX, f Y)

X exp[-i2rfW(X, Y)]dXdY, (3.18a)

where

W(X, Y) = [1 + (X - Xe)2 + (Y -yc) 2]1/2 + aXX + aYY.

(3.18b)

W(X, Y) has a stationary point at

XO X (1-a2a) (3.19a)
0e (1 O2- Y 2 1

Y= Ye - a,(3.19b)
(1 -

2 - a 2)1/2

The Taylor-series expansion of W(X, Y) around the station-
ary point is

W(X, Y) = axX + aY + (1-ax2 a2)1/2

X [1 + /2 (1-a 1
2 )(X-XO) 2

- axay(X - XO) (Y - YO)

+ 1/2(1 - Y2 )(y-_y 0 ) 2 ] +.... (3.20)

Replacing W(X, Y) in Eq. (3.18a) and completing the sta-
tionary-phase approximation yields

- 2T ( , -) = (ax, a,,)

X expl-i2rf[(1 - a 2 -aY 2)/ 2 + axXc + aYe]},

where

=o(ax, a,) = (1 - 2_ a, 2)

XhTo)[Xe-(1 - _ a 2)1/2' (1- f2 - ay01/2 ]

(3.21a)

(3.21b)

To(ao, ay) is a shifted, inverted, and scaled version of 70(x, y).
The main attributes of this transformation are as follows:

1. 7o is centered at (xc, yc), whereas To is centered at the
origin.

2. The radius of the exit pupil is f tan[arcsin(NA)],
whereas To(ax, ay) has a radius NA.

3. The total incident power is conserved; i.e., ITO(XX, Xy)I2
and Io(ax, aY)12 have the same integral in their domains.

The scaling of To(x, y) in Eq. (3.21b) is equivalent to
replacing the distribution at the exit pupil of an aplanatic
lens with that at the entrance pupil. Thus, given the input
distribution to such a lens, no further scaling is required.
(The shift to the center and the inversion are still necessary,
however.)

Equation (3.21a) is now substituted into Eq. (2.2) to yield

tGk#(x, Xy, Xz) = Y-1Jexpi27r[(z - f)(1 -a 1
2 -ay

- xeax - Yeay]I'Jy.(a., ay)To(ax, y)I.

(3.22)

Equation (3.22) provides a simple expression for vector
diffraction in the neighborhood of the focal plane. This
equation is identical to the one derived by Wolf' and is valid
only when the stationary-phase approximation applies.
Note that, in the absence of aberrations, t(x, y, z) = (2X, -
x, 2y, - y, 2f - z). (* denotes a complex conjugate.) This
symmetry with respect to the focal point is a consequence of
the stationary-phase approximation and its absence in a
physical system is a manifestation of the breakdown of the
approximation.

The extent of TO(a1, ay) in the aay plane is ama = NA,
which means that the sample spacing that ensures proper
sampling of the exponential phase factor in Eq. (3.22) is

A . NA 1 z -fINA hi
f min10 2 r + [1-(NA) 21/2JJ

For proper resolution in the xy plane we require that

Lmax > 10fNA.

(3.23)

(3.24)

Of course, if the incident distribution has fine features or if
better resolution is required, the values of Nmax and Lmax
must be adjusted accordingly. The final length of the array
will be

fNxmp

Lmax
(3.25)
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C. Astigmatic Lens
An astigmatic lens with focal lengths f and fy, a numerical
aperture NA (to be defined below), and center coordinates
(X, Yc), is represented by the following amplitude distribu-
tion at the exit pupil:

Here Rx and RY are the half-axes of the (elliptical) exit pupil,
and bmax, a function of NA, is given in Fig. 18 of Appendix B.

2. Calculate h(u, v) as follows:

r '2f I f1~~~~~~~X X) (y -y) 2 ~1l2\y)Io(x, y)exp(~ _j2, 2fj j + (f~~[-e 2 + ~f
= X [(x =12 . (3.26)

10 jfj,[ Xe + () ))]> tanlarcsin(NA)]

This is not necessarily the simplest function to represent an
astigmatic lens. Other functions may be suggested, and the
following treatment would apply equally to them. The
above function, however, has three appealing properties.
The first is that when f = fy it reduces to the spherical lens
of Eq. (3.1). The second is that in the paraxial approxima-
tion it becomes

X -fX, (y y)t(x, y) = ro(x, y)exp{-i.~( 7 x) + 

(3.27)

which clearly shows that f and fy correspond to the curva-
ture of the wave front along the x and y directions. The
third property is that the exit pupil is an ellipse rather than a
circle; this allows a single value of n to minimize the oscilla-
tions along both x and y axes. The optimum n is obtained
from Appendix B with 01 = 0 and 2 = arcsin(NA). 62 is the
half-angle subtended by the lens axis parallel to x at a dis-
tance of [2f1

2 fy/(fx + f)]'
1 2

. Equivalently, 2 is the half-
angle subtended by the axis parallel to y at a distance of
[2fxfy2/(fx + f)]/2.

The treatment of the astigmatic lens parallels that of the
spherical lens in Subsection 3.A. The main steps are out-
lined below.

1. Calculate T(x, y) from the following relation:

r(x, y) = To(x -y)exp -i+rro(X;Y~exP[ f1 + f,

({r/f1 + f\F[(x- X,)2 (y -y) 21xI<1+I + Ik1 2ff,, f. f,,

- --n (f) [(X Xc)2 + (y Y,)1

The sample spacings Ax and Ay must satisfy

A < if 12,2
A<m Rx 2 2f,, 

10 2W~max J
1 f 1/2

A,,•mmnt Ry 2 1f*
1 Cmax

(fxfY)/2 expir (U + xe) 2 + (v + y)2]
h~uv) -z xp 77x1 fx fy 

X tT(AfX X, Xfy y)9. (3.30)

Note that the x and y axes are normalized differently in Eq.
(3.30). The limits imposed on L ax and Lmay can be ob-
tained by considerations similar to those that led to relation
(3.14). Thus we have

Lmax > max{ 10Rx
+ 2R1J+ 2Jxj I

(3.31)

A similar relation is obtained for Lmay,
3. Compute g(a1 , ay) as follows:

g(ax, aY) = exp{i27rz [(1 - X
2

- aY2 )1/2 +- al 2 + O' a,2]}

X exp[-i2r(xCax + yaoY)]JIh(u, v)}. (3.32)

If fx and f are not too far apart, then in the neighborhood of
the focus one can use the same approximations that led to
relation (3.16) and conclude that in addition to relation
(3.31) the following inequality must be satisfied:

Lax minB' 2 i2 | (3.33)
A T < m n .I /L \ . (.3

A similar relationship exists for Lmay/Nmay,
(3.28) 4. Calculate the final distribution from

3.29a)

taO(XX, XY, Xz) = 5r'f'Pa,#(a1 , a,,)gOa1 , a). (3.34)

The final array dimensions will be

f Nm
Lmax = x,

flLmax

(3.29b)

(3.35a)

(3.35b)Lma fyNmay
nLmay
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D. Astigmatic Lens and the Stationary-Phase
Approximation
When the focal lengths are sufficiently large, the distribu-
tion of relation (3.26) can be Fourier transformed directly,
provided that one invokes the stationary-phase approxima-
tion. Under these conditions,

X T( = (ax, ay)exp( i24 {g )

(2 + 2 - 2 + 2f

where

with a similar relationship for Lmay, The final array dimen-
sions are

- fxNmax
f'max ='XLmax

ma, ymay
may

(3.40a)

(3.40b)

11/2 E. Ring Lens
ok 2 + Xx + Ycy,,J) The ring lens is a circularly symmetric lens with a cross

e I section as shown in Fig. 2. A potential application of the ring
lens is focus-error detection in optical disk systems.'2 A

(3.36a) collimated beam is brought to focus by this lens on a ring of

radius Ro at the focal plane. The central region of the lens (r

1- + f X2 -X ( [i -+ f (+ )

Substituting Eq. (3.36a) into Eq. (2.2) yields

I~f(Xx, 2\y, Xz) = I{exP(i21r{z(I - a1x
2

- a, 2)1/2 _ (2fxfy

X [ 1 + f 2 1 + fY) a1,2]

- xCax - YCeYa})"'a(ax, ay)fo(a, aY),

(3.37;

The proper sample spacing in the x direction is

Ax
- < mm

IX 

ffy 'Y

[ 2 2fy (2 2fx) ]J

(3.36b)

< R) is flat, and it is assumed that the light in this region is
unaffected by the lens. The aperture radius is R2. For lens-
center coordinates (Xe, Y.), the exit pupil distribution is writ-
ten as

t(x, Y) = ro(x, y)exp[ i i(f2 + {[(x - Xe)2

+ (y -yC) 2]1/2 R12)1/2]. (3.41)

Again, as in the case of a spherical lens, a quadratic term is
factored out and treated analytically. The necessary steps
are summarized below.

I+

A similar expression exists for Ay. The length of the array is
restricted as follows:

1. Calculate r(x, y) with optimum (see Appendix C)
from the relation

1OfxNA
Lmax {+ f )1/2 '

\22fyJ

fro(x, y)exp - i2irf 1 +

r(X, Y) [(X - Xe)2 + ( - Y)'

IO [(X-Xe)2 + (y-ye),

(x-2 X)2 +

2]1l/2 < R

2]1/2 _ R2

y y) 2 ]1/2 Ro}2)1/2 1 (x - X)2 + (Y- Yc) 2

j flJ 21 f2
* (3.42)

70(ax, ay) =

+1 fy 2

(3.39)
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*R1

Focal
O- /Plane

Ring Lens

Fig. 2. Cross section of a ring lens. The central region (r < R) is
flat and does not affect the incident beam. The curved surface
peaks at r = R0, and the aperture radius of the lens is R2. A
collimated beam is brought to focus by this lens on a sharp ring of
radius Ro at the focal plane. The amplitude distribution at the exit
pupil is given by Eq. (3.41), and, in the absence of aberrations, the
ring width is diffraction limited.

(a)

(c)

M. Mansuripur

The spacing between the samples in the xy plane must satisfy
relation (3.16).

2. Determine h(u, v) from Eq. (3.8). The restriction on
Lmax is given by relation (3.14).

3. Calculate g(, ay) from Eq. (3.10) and the final distri-
bution from Eq. (3.11).

4. RESULTS AND DISCUSSION

Example 1
We study the diffraction pattern from a circular aperture of
radius R = 500, illuminated with a plane uniform wave (C =
0). The integrated intensity within the aperture is set to
unity. We choose Nmax = Nmay = 256, since it is a convenient
array dimension for performing FFT's, and let Lmax = Lmay =
5000. (On a VAX 11/780 computer each 256 X 256 FFT takes
only -10 sec.) Now, for distances z that are not too far from
the aperture, both direct and extended Fresnel techniques
can be applied. A good guide for selecting distances in this

(b)

. oe

<.1,

(d)

Fig. 3. Circular aperture of radius R = 50OX illuminated with a plane uniform wave. (a) Intensity pattern at a distance of 83,333X from the ap-
erture; both direct and extended Fresnel techniques give the same result. (b) Intensity distribution at z = 125,OO0X. Again both methods give
the same result. (c) Intensity pattern at z = 1,000,OOOX obtained by the extended Fresnel method. (d) Same as (c) but with the direct Fresnel
method. In all cases Nina1 = Nmay = 256 and Lmax = Lmay = 5000.

"! 0
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(b

A

(a)

<.14,

(c)

IN.

(d)

o' '3'

(e) (f)

I"I

,'- on
<*1

1
- X <-1N

-I`ox1

,,' A.0

Fig. 4. Circular aperture of radius R = 3 illuminated with a plane uniform wave, polarized in the x direction. The intensity patterns are cal-
culated at a distance of 20X from the aperture. (a) and (b) show, respectively, the x and the z components of polarization obtained by the direct
Fresnel method. (c) and (d) show the results of extended Fresnel calculations, and (e) and (f) show the results obtained from the Fraunhofer
diffraction formula.
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(I) (b

(d)

(e) (M

Fig. 5. Circular aperture of radius R = 100OX illuminated with a uniform wave of curvature C = 5 X 10-6 corresponding to a positive spherical
lens of f = 200,OOOX and NA = 0.005. The intensity patterns are calculated with the extended Fresnel technique, using Nmax, = Nmay = 512 and
Lmax = Lmay = 10,000. (a) z = 100,000, (b) z = 125,000, (c) z = 150,000, (d) z = 160,000, (e) z = 200,000, and (f) z = 240,000.

not-too-far regime is the Fresnel number N defined by the
relation 13

(4.1)

For instance, N = 3 corresponds to z = 83,333. The two
methods give identical results in this case, and the resulting
intensity pattern is shown in Fig. 3(a). A similar situation
occurs when N = 2 and z = 125,000. Both direct and extend-
ed Fresnel methods give the same result, which is shown in
Fig. 3(b).

As z increases, however, the advantages of the extended
method become apparent. Figure 3(c) shows the intensity
pattern at z = 1,000,000, calculated with the extended meth-
od, whereas Fig. 3(d) shows the result of direct computation.
It is obvious that, for the direct method to work at large
distances, the array size must increase, but the extended
method can perform reliably even at distances that are deep
in the far-field region. To check the validity of the extended
method, we calculated the Fraunhofer pattern at z =
1,000,000; the resulting pattern was identical to that shown in
Fig. 3(c).

Example 2
Consider a circular aperture of radius R = 3, illuminated with
a plane uniform beam polarized along x. The integrated
intensity within the aperture is unity. Let Nmax = Nmay =256
and Lmax = Lmay = 30. Figure 4 shows the intensity patterns

300. 00 -

200. 00 

100. 00 

0. 00
50000.00 150000. 00 250000.1

zIX
Fig. 6. Circular aperture of radius R = lOOX illuminated with a
uniform wave of curvature C = -5 X 10-6. Intensity on the optical
axis is shown here as a function of distance from the aperture. The
solid curve is calculated from the analytic expression derived in Ref.
9. The crosses are obtained by numerical computations using di-
rect (or extended) Fresnel method.

z=NR2_N4
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Y

Fig. 7. Geometry of groove structure for a transmission phase
diffraction grating. All parameters are in units of the wavelength X.

for the x and z components of polarization at a distance of z =
20 from the aperture. (The y component was smaller than
the numerical errors and could not be computed.) For com-
parison the results obtained with direct Fresnel, extended
Fresnel, and Fraunhofer techniques are all shown in this
figure.

Example 3
A circular aperture of radius R = 1000 is illuminated with a
uniform wave front of curvature C = -5 X 10-6. (The
situation is similar to that of an incident plane wave on a
positive spherical lens of f = 200,000 and NA = 0.005.) The
intensity distributions at various distances from the aper-
ture are shown in Fig. 5. Note the asymmetry with respect
to the focal plane by comparing Fig.5(d) with Fig.5(f). This
asymmetry is well known for lenses of small numerical aper-
ture, and, in fact, an analytic expression for the axial intensi-
ty of such systems was derived by Mahajan.9 We have
reproduced Mahajan's results in Fig. 6 (solid curve) and
shown several instances of our own direct (or extended)
Fresnel computations (crosses). The agreement is extreme-

A 'A

A

0ŽG"P

Fig. 8. Diffraction from a transmission phase grating. The grating parameters are a = 2,3 = 5, y = 7, 6 = 10, v = 0.5,0 =-45°, and xc = y, =
1.06. The incident beam is Gaussian with an e- radius ro = 20 and has no curvature (C = 0). The intensity patterns are calculated with either
the direct or the extended Fresnel technique, using Nmax = Nmay = 512 and Lma, = Lnay = 350. (a) z = 200, (b) z = 300, (c) z = 500, (d) z = 1000.
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ly good and shows the power and accuracy of the numerical
method.

Example 4
With reference to Fig. 7, a transmission phase diffraction
grating is specified with the parameters c, , y, 6, and t. The
groove width is f3 - a, and the land width is 6 - y. The
regions between land and groove have constant slope as deter-
mined by a and y - . If sharp boundaries are desired, one
should set a = 0 and a = y. For further flexibility we have
allowed the grating center (xc, Yc) and orientation angle 0 to be
parameters as well. The aperture radius is R. If we assume
that 10 samples per period of the grating are sufficient (this
may not always be a good assumption) and that the incident
beam is uniform with curvature C, the restriction on sample
spacing will be

A < [10 + 21CIR 14-2
L 6 (1 + C2R2)1/2 (4.2)

The maximum spatial frequency is

d'a CR +1 43
¢max = (1 + C2 R2 )1/2 + 6 (4)

which is used in relation (2.5) to determine Lmax for direct
Fresnel calculations. For Fraunhofer calculations Lma, =
1OR should be sufficient, and for extended Fresnel computa-
tions relation (2.11) applies. In the latter case, A must also
satisfy relation (2.12).

Figure 8 shows the intensity patterns at various distances
from a grating with parameters a = 2, jf = 5, y = 7, = 10, r =
0.5, 0 = -45°, and xc = yc = 1.06. The incident beam is
Gaussian with an e-i radius ro = 20 and no curvature (C = 0).
Both direct and extended Fresnel methods give the near-field
results in Figs. 8(a)-8(c), but the distribution in Fig. 8(d)
must be calculated with the extended technique.

Example 5
Consider a cylindrical lens of focal length f and aperture
radius R. The cylinder axis has an angle 0 with the x axis, and
the lens-center coordinates are (xc, Yc). The aperture func-
tion is thus

the focus for a cylindrical lens with R = 2500, f = 106,0 = 450,
and x, = y, = 0. The incident beam is a plane wave with a
curvature C = 0. For these computations Nma. = 512 and
Lmax = 40,000.

Example 6
Consider a spherical lens with a NA = 0.5 and a focal length f
= 3500X. Let the incident beam be plane, linearly polarized
along the x axis, and with a total power of unity at the
entrance pupil. Also assume that the lens is aberration free
and satisfies Abbe's sine condition. Figure 10 shows the
intensity patterns for the three components of polarization at
the focal plane. The x component has 93% of the incident
power and is similar to the classical Airy pattern. The y
component has less than 0.1% of the power but shows the four
peaks expected from geometrical considerations. The re-
maining 7% of the power is in the z component shown in Fig.
10(c). This time we observe two peaks, separated along the
direction of incident polarization (x), also as expected from
geometrical optics. Figure 11 shows the intensity patterns
for the x component at 5X and 1OX away from the focal plane.
All the results are obtained by the exact method, using Lma =
20,000 and Nmax = 980.

Since the stationary-phase approximation also applies
here, the results are in good agreement with the classical
ones.2 The particular set of parameters in this example were
chosen, however, to show the practicality of the exact method
for relatively large numerical apertures; the focal length and
the numerical aperture are typical of the microlenses now
being used in optical disk systems.

Example 7
We analyze the case of an astigmatic lens with fx = 20,000, fy
= 20,200, and NA = 0.15. The incident beam is plane and
uniform, and the effects of polarization are ignored. Figure
12 shows plots of intensity at the two focal planes and at a
plane halfway between them. Both the exact method and the
stationary-phase approximation yield the same results.

Example 8
Consider a ring lens with R, = 50, Ro = 100, R2 = 2500, and a
focal length f = 25,000. The incident beam is plane and

OX, y) = r0 (x, y)exp(-i 2 If2 + [(x - xC)sin 0 - (y - y')cos 01211/2)

= [(x - X)2 + (y - y)] >R 2. (4.4)

If we assume that the incident beam has a curvature C, the
spacing between samples must satisfy

r R r 21CIR 11A <min~- I2NA + ~ . (4.5)1X < {10^ L2 + (1 + C2 R2) 1/2 }J

The maximum spatial frequency is

°max = +(1 + C2R 2)1/2 2R

which is used in relation (2.5) to determine Lmax for direct
Fresnel calculations. For Fraunhofer calculations Lmax =
IOR should be sufficient, and for extended Fresnel computa-
tions relation (2.11) applies. In the latter case A must also
satisfy relation (2.12).

Figure 9 shows the intensity pattern in the neighborhood of

uniform, and the polarization effects are ignored. Figure 13
shows the intensity patterns at and near the focal plane,
calculated with Nmax = Nmay = 512 and Lmax = Lmay = 25,000.

APPENDIX A

Consider the function

W6,(r) = (1 - r2 ) 1/2 + 1/2-r
2, r, < r < r 2, (Al)

where 0 < r, < r 2 < 1 and -q is a real parameter. The objective
is to find the value of n that minimizes the maximum of Id,(r)l
in the interval [rl, r2]. ,(r) is the derivative of w,(r) with
respect to r and is given by
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Fig. 9. Cylindrical lens with a focal length f = 106
X and the aper-

ture radius R = 2500X. The incident beam is plane and uniform.
The intensity patterns are obtained with the direct Fresnel method,
using Nma = Nmay = 512 and Lma = Lmay = 40,000. (a) z = 0.75 X
106; (b) z = 106; (c) z = 1.25 X 106.

Fig. 10. Spherical lens with a numerical aperture NA = 0.5 and a
focal length f = 3500X, illuminated with a plane uniform wave,
linearly polarized along the x axis. (a) Intensity pattern for the x
component at the focus; (b) intensity pattern for the y component;
(c) intensity distribution for the z component. For these computa-
tions, Nm, = Nay = 980 and Lmax = Lmay = 20,000.
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A

(b)(a)

a1uto,

Fig. 11. Spherical lens with a numerical aperture NA = 0.5 and a focal length f = 3500X, illuminated with a plane uniform wave, linearly
polarized along the x axis. (a) Intensity pattern for the x component at a distance of 5X from the focal plane; (b) intensity pattern for the x com-
ponent at a distance of 1OX from the focal plane.

Xb (r) = -(r 2 - )-12 + r, r1 • r • r2.

The function ,(r) itself has the following derivative:

ZAi(r) -(1-r 2 )-3 12 + n r1 r r2,

which vanishes at

ro= (1 -23)1/2

ro falls between r and r 2, provided that

(1 - r2)3/ 2 n S (1-r22)-3/2

The value of c,,(r) at r is

c(ro) = (n2 /3 - 1)3/2.

Let us define 01 and 02 as follows:

sin 01 = rl,

sin 02 = r2;

then the values of cb,(r) at r and r2 are

(r)= sin 01 - tan 01,

eo, (r2 ) = 7 sin 02 - tan 02.

The maximum of 6b,7(r)I over [rl, r 2], which will be refer
as dxmax, is at r or r2 or, in case r happens to be with
interval, at r. Thus, among Eqs. (A6), (A8), and (A9
has the maximum absolute value. Figure 14 shows a 
these three functions versus n. Note that, according to
tion (AS), the range of 1 over which ro falls between r, an

1 < < 1

cos3 01 - cos 3 02

The value of n at which &o,(r1) = -(r 2 ) is

tan 01 + tan 02

no sin 01 + sin 0 2

If 1/cos 3 01 > no, then fopt = no; otherwise nopt is between

01 and n0o and corresponds to the crossing point of the

(A2) Ic,,(r 2)1 = tan 02 - X sin 02 and cob(ro) = (
2 /3 - 1)3/2. The

ordinate of the crossing point is eomax
Figure 15 shows plots of nopt and cbma versus 02 for the

(A3) special case in which 01 = 0. Notice that with increasing 02
the optimum n rises above 1, first slowly and then rapidly.
Co5Ma also increases from zero at 02 = 0 to 10-2 at 02 = 250 and

(A4) tolat0 2 =75'.
Figure 16 shows plots of cos2rf [(1 - r2)/ 2 + 1/2-qr21 versus r

in the interval (0, 0.5), corresponding to 01 = 0 and 02 = 30°.
The optimum value n = 1.11395 is used in Fig. 16(a), and the

(AS) value n = 1 is used in Fig. 16(b). The value of f is 3500 in both
plots. Notice how a nonoptimum value of n can increase the
oscillations and thereby require a large number of samples for

(A6) numerical computations.

APPENDIX B

Consider the function
(A7)

cojr) = (1 + r 2)1/2 -/2nr
2, r, < r < r2, (Bi)

where 0 < r < r 2 and n is a real parameter. The objective is
(A8) to find the value of n that minimizes the maximum value of

) 'Ic,(r)I in the interval [r1, r2]. ,(r) is the derivative of w,(r)
(A9) with respect to r and is given by

red to 6,(r) = (1 + r-2)-1/2 - fr, r, < r < r2.
in the
), one The second derivative of war) is

)lot of r = (1 + r2) 31 /2 -n, ri < r • r2,
) rela-
Ad r 2 is which vanishes at

(A10) ro = (n-2/3 1)/2.

ro belongs to [rl, r 2] provided that

(1 + r 2
2Y 31 2 • n • (1 + r 2Y 31 2

(All) The value of &o(r) at ro is

l/coS 3 6cb,(ro) = (1 - n2
/
3 )3

/2.

curves Let us define 01 and 02 as follows:

(B2)

(B3)

(B4)

(B5)

(B6)
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(a)

- 0 o

o,~<- o4-.

(c) A

Io ,w

Fig. 12. Astigmatic lens withfX = 20,OOOX, fy = 20,200X, and NA =
0.15. The incident beam is plane and uniform. For these calcula-
tions, Nma, = N1, 8, = 512 and Lmax = Lay = 40,000. The intensity
pattern is shown at various distances from the lens: (a) z = 20,000,
(b) z = 20,100, and (c) z = 20,200.

(c)

Fig. 13. Ring lens with R = 5OX, Ro = 10OX, R2 = 2500X, and f
25,OOOX. The incident beam is plane and uniform. The intensity
patterns shown are at (a) z = 24,750X, (b) z = 25,OOOX, and (c) z =
25,400X. For these computations Nma. = Nmay = 512 and Lmax =
Lmay = 25,000.
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cos3
02 n < cos3

l. (B10)

The functions cb,(r1) and -b,(r 2) cross at no, where

sin 01 + sin0 2

tan 01 + tan 02 (Bll)

If cos
3 01 • no, then nopt = no; otherwise nopt is between no and

cos
3

01 and corresponds to the crossing point of the curves
Ic,(r2) = n tan 02 - sin 02 and &b(ro) = (1 - n2

/
3
)

3
/
2
. The

ordinate of the crossing point is cma-
Notice that nopt as obtained in Appendix A is the inverse of

nopt in this Appendix, provided that the corresponding 0's are
identical. Of course, when 01 (or 02) in one problem is equal to

i/c os i/coso 2

Fig. 14. Various peaks of Id,(r)l in the interval [rl, r2], plotted here
as functions of 77; the bold curve represents the largest peak. loopt
and COmax are the coordinates of the minimum point of the bold
curve.

6. 00

6. 00

i. 00

2. 00

0. 00

-2. 00

-'4. 00

-6. 00

8. 00 .
0. 00 15.00 30.00 5.00 60.00 75.00 90. 00

02 (degrees)
Fig. 15. Alpt and diax, as functions of 02 for O1 = 0. Note that the
scale for (m. is logarithmic. The particular value of 01 chosen here
corresponds to r, = 0, while r2 = sin 02-

tan 01 = rl,

tan 02 = r2;

then the values of c&(r) at r and r2 are

,o(r) = -n tan 0 + sin 0,

,,(r2) = - tan 02 + sin 02.

(B7)

(B8)

(B9)

The maximum of cb(r)I over [r 1, r2 ], which will be referred to
as ma, is at r, or at r2 or, in case r happens to be within the
interval, at r. Thus, among Eqs. (B6), (B8), and (B9), one
equation represents the maximum absolute value of the func-
tion. Figure 17 shows a plot of these three functions versus n.
Note that according to relation (B5) the range of 71 over which
ro lies between r, and r2 is

1. 00

0. 00

1. 00
0.

1. 00

0. 00

- 1. 00 ]
0. 00

r

(a)

0. 10 0. 20 0. 30 0. 40

r

I
0.50o 0.60

(b)

Fig. 16. Two plots of cosj27rf[(1 - r2 )'/2 + '/2 ,qr
2]1 versus r. In (a)

the optimum value of = 1.11395 is used, whereas in (b) = 1 is
used. In both cases f = 3500, r, = 0, and r2 = 0.5.

sin U0 \

sing

I \NIt
I- ..

\ * '(_ . -b 7
\1 / I I - -

0 Cos30 2 COS0 2 7q cos30
1 cosO1

Fig. 17. Various peaks of 6,,(r)I in the interval [rl, r 2 ], plotted here
as functions of q; the bold curve represents the largest peak. A7opt
and (,m. are the coordinates of the minimum point of the bold
curve.

tan

J/cos3 1 1o 1/cos
3

0 2

- X

- - - b l l
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15.00 30.00 15.00 60.00
02 (degrees)

75. 00 90. oa

Fig. 18. 7oopt and nmia as functions of 02 for 0 = 0. Note that the
scale for cma. is logarithmic. The particular value of 01 chosen here
corresponds to r, = 0, while r2 = tan 02-

(a)

0. 10 0. 20 0. 30 0. 40 0. 50 0.

Figure 18 shows plots of nopt and CmbX versus 02 for the
special case in which 01 = 0. Notice that with increasing 02
the optimum n drops below 1, while daX rises rapidly from 0
at the origin to 10-2 at 02 = 250 and to 1 at 02 = 90°-

Figure 19 shows plots of cosf27rf[(1 + r2)1/2 - /2nr2 versus r
in the interval [0, 0.577] corresponding to 01 = 0 and 02 = 30°.
The value f = 3500 is used in these plots. In Fig. 19(a) the
optimum value X = 0.8977 is used, and the value n = 1 is used
in Fig. 19(b). Notice how a nonoptimum n increases the
oscillations and thereby requires a large number of samples
for numerical computations.

APPENDIX C

Consider the function

W,(r) = [1 + (r - R)2 ]1/2
- /2i~r2 (Cl)

where r is in the interval [rl, r2] with 0 • r1 < R S r2. R is a
constant, and n is a real parameter. The objective is to find
the value of n that minimizes the maximum value of Ic,1(r)I in
the interval [r1, r2]- eo(r) is the derivative of ,(r) with re-
spect to r and is given by

c (r) = (r - R)[1 + (r - R)2 -1/2 - nr,

The second derivative of ,(r) is

r, r r2. (C2)

W(ar) = [I1 + (r-R) 2 ]-3/2 _, r, r r2,

which vanishes at the following two points:

(C3)

(C4)

These points will be in [rl, r2], provided that

[1 + (r2-R)2 -3/2 < n <1

[1 + (R - r) 2] 31/2 < n < 1.

The values of cb,,(r) at ro are

C) (ro) = i(l - 212/3 )3 /2 -nR.

T
60

r

(b)

Fig. 19. Two plots of cosf2wrf[(i + r2)1/2 - /2r 2 1) versus r. In (a)
the optimum value of i7 = 0.8977 is used, whereas in (b) iq = 1 is used.
In both cases f = 3500, r, = 0, and r2 = 0.577.

01 (or 02) in the other, the r, (or r2) values for the two problems
are not equal, as can be observed by comparing Eqs. (A7) and
(B7). When the corresponding O's are identical, we have

(C5a)

(C5b)

(C6)

C~ln

dmax(A) = tan 02 - nopt(A) sin 02,

(max(B) = nopt(B) tan 02 - sin 02.

Also, nopt(A) = 1/nopt(B); therefore

,Qmax(A) opt(A) = 

wmaxin)/7opt max (A)

(B12)
sin ¢ 2
tan02(B13)

Fig. 20. Various peaks of lc,,(r)I in the interval [ri, r2], plotted here
as functions of v. The bold solid curve represents the largest peak
to the right of R, whereas the bold dashed curve corresponds to the

(B14) largest peak to the left of R. The larger of the two curves at any t
thus gives the largest peak, and the optimum tq is the point at which

(B15) the largest peak is minimum.

2.00 _
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1.00 

0. 50 

0. 00

-0. 50

-1. 00

-1. 50 _

-2. 00 

-2. 50_ 0-'
O. 00 O. 05 O. 10

R r2

Fig. 21. nlopt and domax as functions of R for ri = 0.01 and r2 = 0.1.
Note that the scale for coma:: is logarithmic.

1.00

0. 00

-1. 00-
2500. a

fr
(a)

1. 00

0. 00

-1. 00 X
0. 00

tan 02 = r2 -R;

then the values of c(,(r) at r, and r2 are

7(r) = - sin 01 - tan 01,

,,(r = sin 02 - tan 02.

(C7d)

(C8)

(C9)

The maximum of Id,,(r)I over [r1, r2 ], which will be referred to
as Cbmax, is at r, or r2 or, in case r or rO happens to be within
the interval, at r+ or rO. Thus, among Eqs. (C6), (C8), and
(C9), one equation represents the maximum absolute value of
the function. Figure 20 shows a plot of these four functions
versus -q. Note that according to relations (C5) the ranges of n
over which ro4 fall between ri and r 2 are

cos3 '02 < 'I < 1 (for ro), (ClOa)

(ClOb)cos 3 01 • 1 < 1 (for r).

In Fig. 20 we have constructed two functions. The first,
shown as a dark solid curve, represents the maximum of I,,,(r)I
to the right of R and is the larger of the two functions ld,,(r2)1
and 16,(ro+)I when the latter is in the region of relation (ClOa).
Evidently, there is no contribution to this curve from Ic,(r+)I
unless

cos 3 '2 < 2.
tan 02

(Cll)

The section of Ic,(ro)I that is used here is between cos3 02 and
7o, where o belongs to the interval [sin 02/tan 02, (1 +
R2

1
3)- 3 /2 ] and represents the crossing point of the curves for

Ic,(r2) = q tan 02 - sin 02 and ),,(r0+) = (1 - ,n23)3I2 - nR. The
second function, shown as a bold dashed curve, consists of
Id,,,(ri)l when n < cos 3 'k and of lo,,(rO)I when 7 2 cos 3 01. This
function represents the largest value of Ib,,(r) I when r is to the
left of R. Thus we need to investigate the larger of the above
two functions. Two possibilities exist:

1. sin 01 > sin 02. In this case topt is negative and is given
by

sin 02 - sin 0p
71opt tan 02 + tan 0

1250. 00

fr

(b)

Fig. 22. Two plots of cos(27rfl[1 + (r - R)2]12- /2nr
2 ) versus fr.

In (a) the optimum value of 17 = 0.272 is used, whereas in (b) n = 0 is
used. In both cases f = 25000, r, = 0.01, and r2 = 0.1.

Let us define °1, 01, 02, and 02 as follows:

(C12)

2. sin 01 < sin 2. In this case the optimum q is at the
crossing of the two dark curves. The ordinate of the crossing
point is max.

Figure 21 shows plots of flopt and dmax versus R for r, = 0.01
and r2 = 0.1. When R is halfway between r, and r 2, nopt = 0
and the high-frequency terms cannot be factored out. As R
moves closer to r, however, 6)ma drops rapidly and opt in-
creases toward 1.

Figure 22 shows plots of cos(27rf<[1 + (r - R)2]1/2 - %/qr 21)
versus fr for f = 25,000, fr, = 250, fr 2 = 2500, and fR = 1000.
In Fig. 22(a) the optimum value -q = 0.272 is used, and in Fig.
22(b), n = 0 is used. Note how optimum n can balance the
oscillations at the two extremes of the aperture and conse-
quently can minimize the required number of samples for
numerical computations.

(C7a)

(C7b)
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tan °l = rl,

tan 02 = r2

tan 01 = R -rl,
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