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Abstract
The angular momentum Jinc of a light beam can be changed by passage
through a slab of crystal. When the beam is incident along the optic axis of a
biaxial crystal, which may also possess optical activity (chirality), the final
angular momentum J can have both orbital (Jorb) and spin (Jsp)
contributions, which we calculate paraxially exactly for arbitrary biaxiality
and chirality and initially uniformly polarized beams with circular
symmetry. For the familiar special case of a non-chiral crystal with fully
developed conical-refraction rings, J is purely orbital and equal to Jinc/2,
reflecting an interesting singularity structure in the beam. Explicit formulas
and numerical computations are presented for a Gaussian incident beam.
The change in angular momentum results in a torque on the crystal, along
the axis of the incident beam. An additional, much larger, torque, about an
axis lying in the slab, arises from the offset of the cone of conical refraction
relative to the incident beam.

Keywords: polarization, crystal optics, singularities

1. Introduction

In recent years, interest in the angular momentum of light
has revived, partly because of the understanding [1] that
light possesses orbital angular momentum, associated with the
spatial distribution of the fields, in addition to the spin angular
momentum associated with the polarization. For fields with
simple symmetry (e.g. Laguerre–Gauss beams), the angular
momentum is associated with optical singularities—another
focus of current interest [2].

Here we study the angular momentum (orbital and spin)
for a highly singular situation that was important in the
development of optics [3–6] and remains interesting [7–9].
This is the wave field associated with conical refraction, in
which a narrow light beam is incident along an optic axis of a
slab of biaxial crystal, which may also possess chirality (optical
activity). The beam spreads into a hollow cone inside the slab,
and emerges as a hollow cylinder (figure 1). The detailed
structure of the cylinder requires the solution of a diffraction
problem (section 2), and depends on the distance from the slab,
the ratio of the cylinder radius to the width of the incident beam,
and the amount of chirality [8].

The main results (section 3) are explicit formulas for
the orbital angular momentum Jorb and the spin angular
momentum Jsp of the emergent beam, and the total angular

momentum J = Jorb + Jsp. The emerging angular momenta
differ from the incident ones by a factor that depends on the
crystal parameters, indicating a torque tending to twist the
slab in its own plane. For an incident beam with circular
symmetry (in amplitude and therefore intensity), the incident
angular momentum is entirely spin, i.e. Jorb = 0, yet the
emerging angular momentum generally contains both Jorb and
Jsp. In important limiting cases (section 4) the formulas
simplify. Of these, the most interesting (section 4.1) is that
originally predicted by Hamilton [3], where there is no chirality
and the rings are fully developed. Then the incident spin
angular momentum has been transformed entirely to orbital
and reduced by a factor of two. The calculation is exact in the
paraxial regime, which holds for all cases of conical refraction
studied until now.

The calculation of section 3 is based on the following
formula [1, 10] for the component along z (incident beam
direction, with z measured from the entrance face of the crystal)
of the angular momentum per photon, involving the transverse
field E(R, z) = {Ex (R, z), Ey(R, z)}, with R = {x, y} =
{R cos φ, R sin φ}:

J = h̄ Im
∫ ∫

dR(E∗ · ∂φE + ez · E∗ × E)
∫ ∫

dR E∗ · E
≡ Jorb + Jsp. (1)
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Figure 1. Geometry and coordinates as explained in the text, for an
incident beam of width w, forming a cone with semi-angle A inside
a biaxial crystal of thickness l and mean refractive index n2, and
emerging as a ring system whose dark ring has radius R0.

The first term, involving the azimuthal derivative ∂φ , is the
integral over the emergent beam of the local expectation value
of the orbital angular momentum operator R × (−ih̄∇). The
second term is the expectation of the spin angular momentum
operator (for Cartesian field components) h̄σ2, where σ2 is the
second Pauli matrix.

2. Conical diffracted emergent field

Consider a transparent crystal with thickness l and three
principal refractive indices

n1 < n2 < n3 (2)

with n2 − n1 � 1 and n3 − n2 � 1, reflecting paraxiality. We
work with the crystal wavenumber k, defined in terms of the
vacuum wavenumber k0 by

k ≡ n2k0. (3)

The semi-angle of the geometrical cone inside the crystal
is [6, 11]

A = 1

n2

√
(n2 − n1)(n3 − n2). (4)

In addition, the crystal may possess chirality, described by the
parameter �, where kl� is the angle through which the linear
polarization of a plane wave, travelling along the optic axis, is
rotated by the crystal.

The effect of such a crystal on light can be
described compactly by the Hamiltonian operator (an obvious
generalization, to incorporate chirality, of that derived in [9])

describing propagation inside (z < l) and outside (z > l) the
crystal:

H(P) = [ 1
2 P21 + S · Q]�(l − z) + 1

2 n2 P21�(z − l). (5)

Here the transverse momentum P = {kx , ky}/k is the
dimensionless transverse wavevector of plane waves k =
{kx , ky, kz}, and � denotes the unit step. The operator S and
vector Q denote

S = {σ3, σ1, σ2}, Q = {APx , APy, �}. (6)

The operator H acts on the incident field to give the field
at any distance z, according to

E(R, z) = exp
{

−ik
∫ z

0
dz′ H(P, z′)

}

E(R, 0). (7)

For simplicity we assume that the incident field is uniformly
polarized and has circular symmetry, with amplitude profile
E0(R). Thus it can be written as a Bessel superposition of
plane waves labelled by P , with strength a(P):

E(R, 0) = E0(R)e0 =
∫ ∞

0
dP Pa(P)J0(k RP)e0, (8)

where
a(P) = k2

∫ ∞

0
dRRE0(R)J0(k RP) (9)

and the normalized initial polarization is

e0 =
(

ex0

ey0

)

, where e∗
0 · e0 = |ex0|2 + |ey0|2 = 1. (10)

We are interested in the wave outside the crystal, for which
it is convenient to define

R0 ≡ Al, G ≡ �l, Z ≡ l + (z − l)n2. (11)

Here R0 is the radius of the cylinder of refraction beyond
the crystal (figure 1), G is the accumulated chirality, and Z
measures distance, in units of n2, from the focal image plane
(this would be the virtual image plane of the entrance face
if the crystal were isotropic with index n2). Thus Z = 0
corresponds to z = l(1 − 1/n2) (image of entrance face), and
Z = l corresponds to z = l (exit face).

From (7), it follows after a little calculation that the wave
at {R, Z} outside the crystal is

E(R, Z) = [B0(R, Z)1 + C(R, Z) · S]e0, (12)

where

C(R, Z) = {B1(R, Z) cos φ, B1(R, Z) sin φ, B2(R, Z)},
(13)

and B0 and B1 and B2 are the integrals:

B0(R, Z) =
∫ ∞

0
dP P[a(P) exp{− 1

2 ik Z P2}

× cos
(

k
√

R2
0 P2 + G2

)
J0(k RP)],

B1(R, Z) =
∫ ∞

0
dP P

P R0√
R2

0 P2 + G2

[

a(P) exp

{

−1

2
ik Z P2

}

× sin
(

k
√

R2
0 P2 + G2

)
J1(k RP)

]

,

B2(R, Z) = i
∫ ∞

0
dP P

G
√

R2
0 P2 + G2

[

a(P) exp
{

−1

2
ik Z P2

}

× sin
(

k
√

R2
0 P2 + G2

)
J0(k RP)

]

. (14)
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Although described differently, these are the same integrals as
in the pioneering exact paraxial theory of Belsky et al [7, 8],
equivalent to that based on (5).

3. Angular momentum

The angular momentum of the incident beam, easily calculated
from (1) and (8), is

Jinc = 2h̄ Im e∗
x0ey0. (15)

For example, with circularly polarized incident light, where
e0 = {1,±i}/√2, Jinc = ±h̄, and for linearly polarized light
(ey/ex real) Jinc = 0.

Calculation of the angular momenta in the emergent beam
is a straightforward but lengthy exercise starting from (1) and
the field (12). The integration over the angle φ eliminates many
terms, and those that remain, involving the integrals (4), are
greatly simplified by Bessel-transform identities. The results,
independent of Z as they must be, are

Jorb = Jinc∫ ∞
0 dP P |a(P)|2

∫ ∞

0
dP P |a(P)|2 R2

0 P2

R2
0 P2 + G2

× sin2
(

k
√

R2
0 P2 + G2

)
, (16)

Jsp = Jinc∫ ∞
0 dP P |a(P)|2

×
∫ ∞

0
dP P |a(P)|2

[
cos2

(
k
√

R2
0 P2 + G2

)

+
G2 − R2

0 P2

G2 + R2
0 P2

sin2
(

k
√

R2
0 P2 + G2

)]
, (17)

J = Jinc∫ ∞
0 dP P |a(P)|2

×
∫ ∞

0
dP P |a(P)|2

[
cos2

(
k
√

R2
0 P2 + G2

)

+
G2

G2 + R2
0 P2

sin2
(

k
√

R2
0 P2 + G2

)]
. (18)

If the initial beam is Gaussian, that is

E0(R) = exp
(

− R2

2w2

)

,

a(P) = k2w2 exp
(− 1

2 k2 P2w2
)
,

(19)

these formulas can be written more simply using the scaled
cylinder and chirality variables

ρ0 ≡ R0

w
, γ ≡ kG. (20)

After some manipulation, we obtain

Jorb = 1
2 Jinc

[
1 −

(γ /ρ0)
2 exp{(γ /ρ0)

2}E1{(γ /ρ0)
2} − F(ρ0, γ )

]

Jsp = Jinc[(γ /ρ0)
2 exp{(γ /ρ0)

2}E1{(γ /ρ0)
2} + F(ρ0, γ )]

J = 1
2 Jinc[1 +

(γ /ρ0)
2 exp{(γ /ρ0)

2}E1{(γ /ρ0)
2} + F(ρ0, γ )]. (21)

Here E1 is the exponential integral

E1(x) ≡
∫ ∞

x

dt

t
exp(−t) (22)

[12], and

F(ρ0, γ ) = 2 exp((γ /ρ0)
2)

×
∫ ∞

γ /ρ0

dt

[

t − (γ /ρ0)
2

t

]

exp(−t2) cos(2ρ0t). (23)

(F can be expressed in terms of the error erf and an integral
involving erf, but we have not found this representation useful.)

The formulas (21), and their more general versions (16)–
(18), are our main results. Their content is illustrated in
figure 2, showing Jorb, Jsp and J as functions of the two crystal
parameters. To understand the results, we now turn to special
cases.

4. Special cases

4.1. Well developed rings, no chirality

This case, where ρ0 � 1, γ = 0, is the most familiar conical
refraction situation [3, 4], for which the general formula (21)
simplifies:

Jorb = 1
2 Jinc, Jsp = 0, J = 1

2 Jinc, (24)

indicating that the crystal has reduced the angular momentum
to half its initial value (15), and transformed it to purely orbital,
whatever the initial state.

This result, surprising at first sight, can be understood in
physical terms. For well developed rings, the polarization at
any point is linear, as was understood by the pioneers [3–5],
and as follows from (12) to (14) with γ = 0 and ρ0 � 1,
when B2 = 0 and B0 ∼ B1 [9]. The polarization direction is
independent of radial position R and depends only on azimuth
φ, and rotates by π around the rings (figure 3). For pure linear
polarization, Jsp = 0, and Jorb can be calculated from (1)
simply from the angular dependence of the field, which, as
follows from (12) to (14), is proportional to

e(φ) = [ex cos( 1
2 φ) + ey sin( 1

2 φ)]

(
cos( 1

2 φ)

sin( 1
2φ)

)

. (25)

For this case, Jorb is proportional to the geometric phase
accumulated by the polarization around the rings (in general,
Jorb is a radially weighted average of the phase). For circular
incident polarization, the factor 1/2 reflects the fact that
the π polarization rotation is accompanied by a π phase
rotation. Then, from the perspective of singular optics, the
polarization pattern of figure 3 is a manifestation of a C
(i.e. circular) polarization singularity with index +1/2 [13–16].
To understand this, it is necessary to consider points well
inside the rings, where the light intensity is very small and the
approximation (25) does not hold. The polarization is elliptic,
and must be circular somewhere, namely at the C point (if the
incident beam is circularly polarized, the C point is at R = 0).
The unexpected outcome is a polarization singularity with half-
integer orbital angular momentum.

4.2. Chirality dominates

This is the opposite situation. When γ � ρ0, (21) reduces to

Jorb = 0, Jsp = J = Jinc, (26)
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Figure 2. Angular momenta (a) Jorb; (b) Jsp; (c) J = Jorb + Jsp, as functions of the cylinder radius and chirality parameters ρ0 and γ ,
computed by numerical integration of (21).

Figure 3. Linear polarization everywhere for well developed rings
(section 4.1), dependent on azimuth but not radius.

indicating that for strong chirality the crystal changes only the
phases of the circular components of the incident beam and
so has no effect on its angular momentum. (In (12)–(14), this
corresponds to B1 = 0, B0 ∼ cos(kG), B2 ∼ i sin(kG).)

4.3. Arbitrary biaxiality, no chirality

This is the case of partially developed conical refraction rings,
where γ = 0 and ρ0 can have any value [9]. Equation (21)
takes the simpler form

Jorb = 1
2 Jincρ0 exp(−ρ2

0)
√

πerfi(ρ0)

Jsp = Jinc(1 − ρ0 exp(−ρ2
0 )

√
πerfi(ρ0))

J = Jinc(1 − 1
2 ρ0 exp(−ρ2

0 )
√

πerfi(ρ0)),

(27)

where erfi denotes Dawson’s integral [12]

erfi(x) ≡ 2√
π

∫ x

0
dt exp(t2). (28)

These results, showing how the angular momenta depend on
the strength of the crystal, as described by the ring radius
ρ0, are illustrated in figure 4. An interesting feature is that
during the transformation to purely orbital angular momentum
(section 4.1) the spin angular momentum reverses sign as it
falls to zero, with a minimum value Jsp = −0.285 when
ρ0 = 1.502.

1

0.8

0.6

0.4

0.2

0

0 1 2 3 4 5

-0.2

ρ
0

Jorb

Jsp

J

Figure 4. Angular momenta as a function of scaled cylinder radius
ρ0, for zero chirality, calculated from (27).

4.4. Large chirality or biaxiality

When ρ0 � 1 or γ � 1, the oscillatory integral F
(equation (23)) is small, and

Jorb = 1
2 Jinc[1 − (γ /ρ0)

2 exp{(γ /ρ0)
2}E1{(γ /ρ0)

2}]
Jsp = Jinc[(γ /ρ0)

2 exp{(γ /ρ0)
2}E1{(γ /ρ0)

2}]
J = 1

2 Jinc[1 + (γ /ρ0)
2 exp{(γ /ρ0)

2}E1{(γ /ρ0)
2}].

(29)

Figure 5 shows how this approximation describes the average
of the oscillations of the angular momenta as a function of γ ,
which get weaker as ρ0 increases.

4.5. Oscillatory corrections for large chirality or biaxiality

In the case just considered, the weak oscillations are given
asymptotically by the behaviour of the integral F at its end-
point t = γ /ρ0. The zero-order term vanishes because of
the factor t − (γ /ρ0)

2/t , and the leading-order approximation,
derived by two integrations by parts, is

Jorb = 1
2 Jinc[1 − (γ /ρ0)

2 exp{(γ /ρ0)
2}E1{(γ /ρ0)

2}
− ρ2

0 Re[exp(−2iγ )/(γ + iρ2
0 )2]]

Jsp = Jinc[(γ /ρ0)
2 exp{(γ /ρ0)

2}E1{(γ /ρ0)
2}

+ ρ2
0 Re[exp(−2iγ )/(γ + iρ2

0 )2]]

J = 1
2 Jinc[1 + (γ /ρ0)

2 exp{(γ /ρ0)
2}E1{(γ /ρ0)

2}
+ ρ2

0 Re[exp(−2iγ )/(γ + iρ2
0 )2]].

(30)
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Figure 5. Angular momenta as a function of chirality γ , for
(a) ρ0 = 2, (b) ρ0 = 5, (c) ρ0 = 10. Exact computations from (21):
thick dotted curves, Jorb; thick dashed curves, Jsp; thick continuous
curves, J . Approximations (29): thin curves.

Figure 6 shows that this approximation captures the
oscillations, with an accuracy that increases with ρ0.

Physically, the oscillations with γ can be regarded
as a consequence of interference between geometrical
contributions from the two sheets of the wave surface, which, in
contrast to those in the well developed ring case of section 4.1,
are no longer in phase.

5. Concluding remarks

We have shown that for any biaxial crystal (i.e. ρ0 > 0), with
or without optical activity γ , the total angular momentum
emerging from the slab is different from that incident on it.
Therefore, the light must exert a torque on the slab, tending
to rotate it about the incident beam direction. The magnitude

1
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0
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γ
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Figure 6. Angular momenta as a function of chirality γ , for
(a) ρ0 = 1 and (b) ρ0 = 2. Exact computations from (21): thick
dotted curves, Jorb; thick dashed curves, Jsp; thick continuous
curves, J . Approximations (30): thin curves.

of this torque is Jinc − J multiplied by the rate of arrival of
photons from the incident beam. It would be interesting to
measure this.

A different torque arises from the fact that the cone and
cylinder axes do not coincide with that of the incident beam
(figure 1). This generates a torque about an axis in the plane
of the slab and perpendicular to the incident beam, whose
magnitude, is, for photon wavelength λ = 2π/k, the rate of
arrival of photons multiplied by the angular momentum

J1 = R0 × photon momentum = h̄ R0

λ
. (31)

This is much larger than the torque associated with the
polarization changes we have been studying, since these are
of order h̄ or smaller, and R0 � λ for any situation involving
conical refraction.

We have considered only the simplest case of a uniformly
polarized incident beam with circular symmetry. The
same techniques (based on (1) and (5)–(7)) can be applied
straightforwardly to calculate the spin and orbital angular
momenta for more complicated incident beams. An obvious
example is the family of Laguerre–Gauss beams, where the
intensity is circularly symmetric but the phase varies around
the beam; in these cases, Jinc will have an orbital as well as a
spin part. Another generalization would be to beams with non-
circular intensity distributions, such as Gauss–Hermite beams.
We leave these cases as exercises for interested readers.

Finally, we emphasize that our calculations have
concerned the angular momenta outside the crystal. We have
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not needed to address the tricky question of angular momentum
within the crystal, which has been studied recently [17] for a
beam inside a uniaxial crystal and travelling along its optic
axis.
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