OPTI 415R: Optical Specifications, Fabrication and Testing


Required Texts

  • Schwiegerling J. Optical Specification, Fabrication and Testing. (SPIE, Bellingham, WA, 2014)  ebook

Back to Top


  • Daniel Malacara’s OPTICAL SHOP TESTING: eBook
  • Warren Smith’s MODERN OPTICAL ENGINEERING:
  • Bob Fischer’s OPTICAL SYSTEM DESIGN:

Back to Top


Formal Notes

Back to Top


Course Outline

1. Properties of Optical Systems

  • 1.1. Optical Properties of a Single Spherical Surface (Brief Review)

    • Notes
    • 1.1.1. Refractive Surface: Radius, Curvature, Focal Length and Power
    • 1.1.2. Reflective Surface: Focal Length and Power
    • 1.1.3. Gaussian Imaging Equation
    • 1.1.4. Newton’s Equation
  • 1.2. Aperture and Field Stops (Brief Review)

    • Notes
    • Slides
    • 1.2.1. Aperture Stop Definition
    • 1.2.2. Marginal Ray
    • 1.2.3. Chief Ray
    • 1.2.4. Vignetting
    • 1.2.5. Field Stop Definition
      • 1.2.5.1. Image Sensor as Field Stop
        • 1.2.5.1.1. Standard CCD/CMOS sensor dimensions Table
  • 1.3. First Order Properties of an Optical System (Brief Review)

    • Notes
    • Slides
    • ISO10110 Part 1 Notes
    • Real Raytracing
    • 1.3.1. Gaussian Reduction (Conceptually)
    • 1.3.2. ynu raytrace Patent ynu example in Excel Spreadsheet
    • 1.3.3. Cardinal Points
    • 1.3.4. Entrance and Exit Pupils
    • 1.3.5. Extension of Gaussian Imaging to Thick Systems
    • 1.3.6. Transverse and Longitudinal Magnification
    • 1.3.7. Lagrange invariant, Etendue, Throughput, AΩ Product
    • 1.3.8. F-Number, Working F-Number and Numerical Aperture
    • 1.3.9. Depth of Field
    • 1.3.10. Field of View
    • 1.3.11. Front and Back Focal Distances
      • 1.3.11.1. Standard Flange distances for cameras
    • 1.3.12 Real Raytracing
  • 1.4. Measurement of First Order Properties of Optical Systems

    • Notes
    • 1.4.1. Measurements based on Gaussian Imaging Equation
    • 1.4.2. Autocollimation Technique
    • 1.4.3. Neutralization Test
    • 1.4.4. Focimeter
    • 1.4.5. Focal Collimator
    • 1.4.6. Reciprocal Magnification
    • 1.4.7. Nodal-Slide Lens Bench
  • 1.5. Diffraction and Aberrations

    • Notes
    • Slides
    • 1.5.1. Black Box Optical System based on Cardinal Points and Pupils.
    • 1.5.2. Wavefront Picture of Optical Imaging
    • 1.5.3. Diffraction-Limited Systems and Connection to Fresnel Diffraction
    • 1.5.4. Point Spread Function (PSF) calculation and dimensions
    • 1.5.5. Sign and Coordinate System Conventions
    • 1.5.6. Optical Path Length (OPL), Optical Path Difference (OPD), Wavefront Error
    • 1.5.7. Transverse Ray Error and Spot Diagrams
    • 1.5.8. Aberrations of Rotationally Symmetric Optical Systems
      • 1.5.8.1. Piston,Tilt and Defocus
      • 1.5.8.2. Seidel Aberrations
    • 1.5.9. Aberrations of General Optical Systems
      • 1.5.9.1. Examples of non-rotationally symmetric systems
      • 1.5.9.2. Generalization of Seidel Aberrations to on-axis case
      • 1.5.9.3. Zernike polynomials
        • Table of Zernike polynomials up to 6th Order
        • 1.5.9.3.1. Different variations found in literature
        • 1.5.9.3.2. Normalization, Radial Polynomials, Azimuthal components
        • 1.5.9.3.3. Examples of different orders of Zernike polynomials
        • 1.5.9.3.4. Representation of complex wavefront as linear combination
        • 1.5.9.3.5. Coordinate system conversions
        • 1.5.9.3.6. Pupil Size Conversion
        • 1.5.9.3.7. Fitting wavefront error to Zernike polynomials
      • 1.5.10. Through-Focus PSF and Star Test
        • 1.5.10.1. Diffraction Limited Case (Defocus)
        • 1.5.10.2. Seidel Spherical Aberration
        • 1.5.10.3. Zernike Spherical Aberration
        • 1.5.10.4. Astigmatism
        • 1.5.10.5. Coma
      • 1.5.11. Measurement of Distortion
        • 1.5.11.1. Conventional case
        • 1.5.11.2. Special Cases anamorphic, fθ lens. Scheimpflug
  • 1.6. Optical Quality Metrics

    • Notes
    • Slides
    • 1.6.1. Resolution Targets
      • 1.6.1.1. Rayleigh Criterion
    • 1.6.2. Strehl Ratio
    • 1.6.3. Peak-to-Valley, Wavefront Variance and RMS Wavefront Error
      • 1.6.3.1. Relationship to Zernike Coefficients
      • 1.6.3.2. Relationship to Strehl Ratio
    • 1.6.4. Encircled and Ensquared Energy
    • 1.6.5. Optical Transfer Function (OTF)
      • 1.6.5.1. Modulation Transfer Function (MTF)
      • 1.6.5.2. Phase Transfer Function (PTF)
      • 1.6.5.3. Fourier Transform relationship to PSF
      • 1.6.5.4. Autocorrelation of Pupil Function
      • 1.6.5.5. Line Spread Function
      • 1.6.5.6. Siemens Star
  • 1.7. Aspheric Surfaces

    • Notes
    • Slides
    • 1.7.1. Conics
    • 1.7.2. Quadrics
    • 1.7.3. Higher Order Aspheres
    • 1.7.4. Torics and Biconics
    • 1.7.5. Cylinders
    • 1.7.6. ISO 10110 Parts 12 and 19

Back to Top

2. Fabrication of Optical Surfaces Notes Slides ISO 10110 Materials

  • Notes
  • Slides
  • ISO 10110 Materials
  • 2.1. Optical Materials

    • 2.1.1. Glass and Plastics
    • 2.1.2. Dispersion Formulas
    • 2.1.3. Infrared and Ultraviolet Materials
  • 2.2. Grinding and Polishing Flats, Windows and Prisms

  • 2.3. Grinding and Polishing Spherical Surfaces

  • 2.4. Grinding and Polishing Aspheric Surfaces

  • 2.5. Diamond Turning and Fast Tool Servo

  • 2.6. Magnetorheological Finishing

  • 2.7. Plastic Injection Molding

  • 2.8. Glass Molding

Back to Top

3. Non-interferometric Testing

  • Notes
  • Slides
  • 3.1. Surface Radius of Curvature

    • 3.1.1. Geneva Gauge
    • 3.1.2. Spherometer
  • 3.2. Wavefronts

    • 3.2.1. Foucault Knife Edge Test
    • 3.2.2. Wire Test
    • 3.2.3. Ronchi Test
    • 3.2.4. Hartmann Screen Test
    • 3.2.5. Shack-Hartmann Sensor
      • 3.2.5.1. Fitting Shack-Hartmann Data to Zernike polynomials
    • 3.2.6. Moire Deflectometry

Back to Top

4. Basic Interferometry and Optical Testing

  • Notes
  • Slides
  • 4.1. Review of Two Beam Interference

    • 4.1.1. Plane waves
    • 4.1.2. Spherical waves
    • 4.1.3. General wavefront shapes
    • 4.1.4. Visibility
    • 4.1.5. Coherence and Polarization
  • 4.2. Newton’s Rings

    • Video
    • 4.2.1. Patterns
    • 4.2.2. Determining convexity
    • 4.2.3. Test Plates
  • 4.3. Fizeau Interferometer

    • 4.3.1. Classical Fizeau
    • 4.3.2. Configurations for Flats, Concave and Convex Surfaces
    • 4.3.3. Laser Fizeau
  • 4.4. Twyman-Green Interferometer

    • 4.4.1. Common Configurations
  • 4.5. Mach-Zehnder Interferometer

    • 4.5.1. Common Configurations
    • 4.5.2. Single Pass
  • 4.6. Lateral Shearing Interferometers

    • Video
    • 4.6.1. Common Configurations
    • 4.6.2. Derivatives of wavefronts
  • 4.7. Interferograms

    • 4.7.1. Seidel Aberrations
  • 4.8. Phase-Shifting Interferometry

    • 4.8.1. Phase Shifters
    • 4.8.2. Algorithms
    • 4.8.3. Phase unwrapping
    • 4.8.4. Calibration and errors
  • 4.9. Testing Aspheric Surfaces

    • 4.9.1. Computer Generated Holograms

Back to Top

5. Optical Specification

  • Slides
  • 5.1. ISO 1101 Standard

  • 5.2. ISO 10110 Standard

    • 5.2.1. General
    • 5.2.2. Stress Birefringence
    • 5.2.3. Bubbles and Inclusions
    • 5.2.4. Homogeneity
    • 5.2.5. Surface Form Errors
    • 5.2.6. Centering
    • 5.2.7. Surface Imperfections
    • 5.2.8. Texture
    • 5.2.9. Surface Treatment and Coatings
    • 5.2.10. Tables for Elements and Assemblies
    • 5.2.11. Non-toleranced Data
    • 5.2.12. Aspheric Surfaces
    • 5.2.13. Wavefront Deformation
    • 5.2.14. Laser Damage Threshold

Back to Top


Homework

Back to Top


Homework Solutions

Back to Top


Midterms

Back to Top


Finals

Back to Top


Demos

  • Newton’s Rings

Back to Top


Videos

Fabrication Techniques

Non-Interferometric Testing

Miscellaneous

Back to Top