Measurement of First order properties of optical systems
(See Sections 5.1 to 5.4 in book for this material)

Suppose we have a thin positive power \(\phi_i > 0 \), we can use the Gaussian imaging eq. to calculate \(\phi_i = \frac{1}{f_{ei}} \)

\[
\frac{1}{z} - \frac{1}{z'} = \frac{1}{f_{ei}}
\]

Set up an object and measure \(z, z' \) to calculate \(f_{ei} \). If \(z \) is large relative to the focal length, then \(z' = \frac{1}{f_{ei}} \). How large does \(z \) need to be in order to consider the object at \(\infty \)?

The Newton imaging eq. in air is

\[
z z' = -\frac{f_{ei}^2}{\rho}
\]

If \(z = \alpha f_{ei} \) and \(z' = \beta f_{ei} \), where \(\alpha, \beta \) constants

\[
\beta = -\frac{1}{\alpha}
\]

For example, if \(z \) is \(10 \) focal lengths, then \(\beta \) is \(-\frac{1}{10} \) focal length

Things are a little trickier with negative thin lenses, since the image is virtual \((z' < 0) \). Suppose we have a thin negative lens with power \(\phi_2 < 0 \), we can use the technique above if we combine it with a positive lens \(\phi_3 > 0 \) as long as \(\phi_3 > -\phi_2 \). In this case

\[
\frac{1}{z} - \frac{1}{z'} = \phi_2 + \phi_3
\]

Establishes a long focal a real image.

Show demo with +3D and -1D lens.
14.2 AUTO COLLIMATION TECHNIQUE

Place a point source in front of a lens under test and a plane mirror behind the test system. When the point source is located at the front focal point, the return beam from the mirror will focus at the point source. Note: A slight tilt in the mirror allows the return spot to be visualized.

For a negative lens, use an auxiliary lens to create a converging beam onto the test lens.

Point SOURCE MICROSCOPE (PSM)

In PSM, we add a beamsplitter and camera to view return image without needing to tilt mirror. Focused spot appears in camera image when return rays retrace exiting rays.
Measurement variations

Cat's Eye

| PSM | PSM |

Centre of Curvature

Place surface at point source and the slide until a second point is found on PSM image. The distance traveled is the surface radius.

Surface is perpendicular to PSM axis when spot is at center of image.

No Microscope Objective

Window surfaces are parallel when spots are superimposed. Separation between spots can be translated into wedge error.

Auto-collimator - optical instrument that projects collimated beam and analyzes return beam either visually or digitally.

1.4.3 Neutralization Test

Place an unknown thin lens against a series of known lenses until the net power is zero. The test lens then has equal magnitude but opposite sign as the known lens.

Hand out ±3D lenses.
Why do you get these motions?

Parenpency of lens acts like a prism.
System for measuring power of a thin lens

\[\phi_t = \frac{1}{f_t} \]$ \text{ TEST LENS } \phi_{\text{Test}}$

Separation between known lens with power $\phi_t = \frac{1}{f_t}$ and the test lens is f_1. Adjust target distance z_1 until beam emerging from test lens is collimated.

\[
\frac{1}{z_1'} - \frac{1}{z_1} = \frac{1}{f_1} \quad \Rightarrow \quad z_1' = \frac{z_1 f_1}{z_1 + f_1}
\]

\[
\frac{1}{z_2'} - \frac{1}{z_2} = \phi_{\text{Test}} \quad \text{ and } \quad z_2' = \infty \quad z_2 = z_2' - f_1
\]

\[
\phi_{\text{Test}} = \frac{z_1 f_1}{z_1 + f_1} - \frac{1}{f_2} = \frac{z_1 + f_1}{f_2} \quad \text{POWER IS LINEAR IN } z_1
\]

\[1.4.5 \quad \text{Focal Collimator} \]

For thin lenses, we can use a focal collimator to find the focal points, foci, and principal points. If a lens of known focal length f_{oi} is needed, size of image is measured with microscope.

\[
f_{\text{Test}} = \frac{-h'}{h} f_1
\]

Magnification is ratio of the focal lengths.
For negative lens, objective working distance needs to be longer than first.

1.4.6 Reciprocal Magnification

Technique for finding cardinal points of thick lens system.

\[
\frac{1}{Z_1} - \frac{1}{Z_2} = \phi \quad \text{and} \quad \frac{1}{Z_1'} - \frac{1}{Z_2'} = \phi
\]

Choose special case where \(Z_1' = -Z_1 \) and \(Z_2' = -Z_2 \),

\[
\frac{1}{Z_2} - \frac{1}{Z_1'} = \phi \quad \text{Identical to first position means same object/image plane}
\]

\[
\eta_1 = \frac{Z_1'}{Z_1}, \quad \eta_2 = \frac{Z_1'}{Z_2} = -\frac{l_1}{l_1'} = \frac{1}{\eta_1} \quad \text{Hence the same reciprocal magnification}
\]

From the drawing \(d = l_1 - l_2 = Z_1 + Z_1' \).
The gaussian imaging eq. can be written as

\[Z_1 = \left[\frac{1 - m_1}{m_1} \right] f_E \]

From above, \(Z'_1 = m_1 z_1 \), and \(d = z_1 + Z'_1 = (1 + m_1) z_1 \).

\[f_E = \left[\frac{d}{1 + m_1} \right] \left[\frac{m_1}{1 - m_1} \right] \]

\[Z'_1 = \frac{m_1 d}{1 + m_1} \]

\[Z_1 = \frac{d}{1 + m_1} \]

1.4.7 Nodal Slide Lens Bench

Alternative method for measuring the cardinal points of the thick system. It consists of a specialized lens mount that allows the test to rotate about an axis perpendicular to the optical axis. The other component consists of a microscope for viewing the focal spot of the test lens.

![Diagram of nodal slide lens bench](image)

Collimated light is passed through the test lens and the position of the microscope adjusted so the focal spot is seen. The lens is then pivoted about the rotation axis while the focal spot is observed. If the focal spot moves, then the rotation axis is not at the rear nodal point. The test lens is then translated axially and the process is repeated until the focal spot is stable in the microscope. At this point, the nodal point is over the rotation axis. The figures below illustrate the effect.
Since the nodal points have unit angular magnification, the exit ray passing through the front nodal point that is parallel to the optical axis emerges from the rear nodal point parallel to the optical axis. The focal spot is therefore displaced by the same amount as the rear nodal point N'. When the rotation is about N', N' is not displaced, so F' is not displaced.