Selected Research

Fluctuation modes of polariton lasers

       Details>>

Binder and N. H. Kwong, “Metamorphosis of Goldstone and soft fluctuation modes in polariton lasers,” Phys. Rev. B 103, 085304 (2021).

Spotnitz , N. H. Kwong, and R. Binder, “Terahertz spectroscopy of semiconductor microcavity lasers: Photon lasers,” Phys. Rev. B 104, 115305 (2021).

M. Em. Spotnitz, N. H. Kwong, and R. Binder, “Collective terahertz fluctuation modes in a polariton laser,” Phys. Rev. B 107, 125309 (2023)

N. H. Kwong, M. Em. Spotnitz, and R. Binder, “Gapless fluctuations and exceptional points in semiconductor lasers”, Phys. Rev. B 109, 045306 (2024) “Editors’ Suggestion.”


2D semiconductor plasmonic structures

Details>>

Klein, R. Binder, M.R. Koehler, D.G. Mandrus, T. Taniguchi, K. Watanabe, and J.R. Schaibley, “Slow light in a 2D semiconductor plasmonic structure”, Nature Communications 13, 6216 (2022).

Klein, B. H. Badada, R. Binder, A. Alfrey, M. McKie, M. R. Koehler, D. G. Mandrus, T. Taniguchi, K. Watanabe, B. J. LeRoy, and J. Schaibley, “2D semiconductor nonlinear plasmonic modulators”, Nature Communications 10, 3264 (2019).


Demonstration of Polaritonic Bardeen-Cooper-Schrieffer state

Details>>

Hu, Z. Wang, S. Kim, H. Deng, S. Brodbeck, C. Schneider, S. Höfling, N. H. Kwong, and R. Binder, “Polariton Laser in the Bardeen-Cooper-Schrieffer Regime”, Phys. Rev. X 11, 011018 (2021).


Orbital-Angular-Momentum Control in Polaritonic Quantum Fluids

Details>>

S. M. H. Luk, N. H. Kwong, P. Lewandowski, S. Schumacher, and R. Binder, “Optically Controlled Orbital Angular Momentum Generation in a Polaritonic Quantum Fluid,” Phys. Rev. Lett. 119, 113903 (2017).


Polariton Patterns in Semiconductor Microcavities

image002Details >>

Y. C. Tse, Chris K. P. Chan, M. H. Luk, N. H. Kwong, P. T. Leung, R. Binder and Stefan Schumacher, “A population-competition model for analyzing transverse optical patterns including optical control and structural anisotropy,” New J. Phys. 17, 083054 (2015).

V.Ardizzone, P.Lewandowski, M.H.Luk, Y.C. Tse, N.H.Kwong, A.Lucke, M.Abbarchi, E.Baudin, E.Galopin, J.Bloch, A.Lemaitre, P.T. Leung, P.Roussignol, R.Binder, J.Tignon and S.Schumacher, “Formation and control of Turing patterns in a coherent quantum fluid,” Scientific Reports 3,3016 (2013).

Schumacher, N.H. Kwong, and R. Binder, “Influence of exciton-exciton correlations on the polarization characteristics of polariton amplification in semiconductor microcavities,” Phys. Rev. B 76, 245324 (2007).


Many-Body Interactions in Graphene

figure-graphene (2)Details >>

R. Binder, A. T. Roberts, N. H. Kwong, A. Sandhu, and H. O. Everitt, “Global k-space analysis of electron-phonon interaction in graphene and application to M-point spectroscopy,” Phys. Rev. B 93, 085414 (2016)

A.T. Roberts, R.Binder, N.H. Kwong, D. Golla, D. Cormode, B.J. LeRoy, H.O. Everitt, and A. Sandhu, “Optical characterization of electron-phonon interactions at the saddle point in graphene,” Phys. Rev. Lett. 112, 187401(5) (2014).


Relation Between the Interband Dipole and Momentum Matrix Elements in Semiconductors

figure-equation-p-r-relationDetails >>

Gu, N.H. Kwong, and R. Binder, “Relation between the interband dipole and momentum matrix elements in semiconductors,” Phys. Rev. B 87, 125301 (17 pages) (2013).


Slow and Fast Light Associated With Polariton Interference

image006Details >>

B. Gu, N.H. Kwong, R. Binder, and Arthur L. Smirl, “Slow and fast light associated with polariton interference,” Phys. Rev. Rev. B 82, 035313 (2010)


Exciton Spectroscopy of Mechanically Deformed GaAs Nanomembranes

image004Details >>

R. Binder, B. Gu, and N.H. Kwong, “Quantum-confined strain gradient effect in semiconductor nanomembranes,” Phy.Rev.B 90, 005200 (2014).


 Four-Wave Mixing and Many-Particle Effects in Semiconductors

image008

image010

Complete Tutorial


Many-Particle Theory of Luminescence and Absorption From Excited Semiconductors

image012Details >>

N.H. Kwong, G. Rupper, and R. Binder, “Self-consistent T-matrix theory of semiconductor light-absorption and luminescence,” Phys. Rev. B 79, 155205 (2009)


Electromagnetically-Induced Transparency Via Biexcitons in semiconductor Quantum Wells

image014Details >>

M. C Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama and R. Binder, “Electromagnetically Induced Transparency in Semiconductors via Biexciton Coherence,” Phys. Rev. Lett. 91, 183602(4) (2003)


Theory of Semiconductor Laser Cooling at Low Temperatures

image016Details >>

G. Rupper, N.H. Kwong, and R. Binder, “Large excitonic enhancement of optical refrigeration in semiconductors,” Phys. Rev. Lett. 97, 117401 (2006)


Degenerate Four-Wave Mixing of Polaritons in Semiconductor Microcavities

image018Details >>

N.H. Kwong, R. Takayama, I. Rumyantsev, M. Kuwata-Gonokami and R. Binder, “Evidence of Nonperturbative Continuum Correlations in Two-Dimensional Excition System in Semiconductor Microcavities,” Phys. Rev. Lett. 87, 027402(4) (2001)


Many-Particle Effects in the Nonlinear Polarization Rotation in Semiconductor Quantum Well Bragg Structures

image020Details >>

D.T. Nguyen, N.H. Kwong, Z.S. Yang, R. Binder, and A.L. Smirl “Mechanism of all-optical spin-dependent polarization switching in Bragg-spaced quantum wells,” Appl. Phys. Lett., 90, 181116-1 (2007)


Many-Particle Theory of All-Optical Polarization Switching in Semiconductor Quantum Wells

image022Details >>

I. Rumyantsev, N. H. Kwong, R. Binder, Eric J. Gansen and Arthur L. Smirl, “c(3) analysis of all-optical polarization switching in semiconductor quantum wells,”  Phys. Rev. B  69, 235329(9) (2004)


Theory of Transversal Light Forces in Semiconductors

image024Details >>

R. Binder and M. Lindberg, “Optical electron-hole tweezers in semiconductor,” J. Phys. Cond. Matt. 18, 729-740 (2006).