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Formation and Decay of Coherent Four-Particle Correlations
in Semiconductors: A Green’s Function Theory
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Fig. 2. Third-order contributions resulting from the RPA polarization scattering diagram a) of Fig. 1
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This tutorial is about

using Feynman diagrams and four-wave mixing to
study many-particle correlations in semiconductors

It is not about

photon echo, holography, phase conjugation,
third-harmonic generation, ...
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Three theoretical approaches

Fermionic theory

Bosonic theory
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Outline:

» Introduction

» Many-particle theory and Green's functions
» Third-order optical response

= Correlations beyond third order

» Few-level systems

* FWM instabilities (time permitting)
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Next:

Weekend experiences with
perturbative and non-perturbative
two-particle correlations
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Two-particle interaction
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Two-particle correlations: bound states




_ College of Optical Sciences

N THE UNIVERSITY OF ARIZONA®

Two-particle correlation: continuum states
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Next:

Introduction to semiconductors
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GaAs bandstructure

Optical excitation
typically close to
I" point (k=0)
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Parabolic Bandstructure near k=0

conduction band

Ground state:
full valence band

»
>

k

=
‘. valence band
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Optical excitation




light absorbed

Optical excitation

v

%

“hole” in valence band
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Hole = positively charged “particle”

v

“hole” in valence band
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Hole = positively charged “particle”

v
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Excitons

real space:

e-h pair

attractive
Coulomb
interaction

v
=~

+ Bound states (Rydberg law) &, = E

5
n2

g

+ Continuum states
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Excitons
real space:

1%
o
g
= bulk GaAs
- 12 1s
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moog
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Nonlinear excitation: two-exciton states
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Next:

The concept of four-wave mixing (FWM)
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Wave mixing and self diffraction

pump kp —_—

probe kS
("signal")

Grating with spatial wave vector Akf — kp — ks
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Forward four-wave mixing

pump kp —_—

/ \
probe kS
("signal”) kf = kp + Ak
= 2k —k,

diffracted light
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g, 0° ) 4rr O°
~V2LE= - P
¢’ ot* ¢’ ot

Third-order response:
(schematically; integrals over space
and time suppressed)

P = E" E E

spatial ik, r _ikgr  Jkor o _ikgr
dependence: e’ e e’ e’

information about excitonic correlations

Strategy in this talk: present P as Feynman diagrams
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Four-wave mixing
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Next:

Introduction to many-particle theory
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electrons S a;rk ask

holes J 7? ‘ a}Lk ajk

creation annihilation
operators operators
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Fermionic semiconductor Hamiltonian

H = Hband + HCoqumb + H

light—coupling
_ e At h At
Hpan _ngk dy Ay +Z‘9jk ;. a
sk jk
H_J H_J
e and h occupation number operators

c
HCoqumb ZV [ask+q ask —q ask a'5k+aj k+q aj k—q aj k' ajk+2ask+q ],k—q ajk ask:|

all NG / g /
|nd|ces T T T

e-e h-h e-h interaction

I_Ilight—coupling = Z |: E (t) ask k+:usj E(t) ask :|
inda}lcles H—J H—J

electron-hole pair annihilation and creation operators
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Fermionic semiconductor Hamiltonian
H = Hband + HCoqumb + Hlight—coupling
- K+ K'-q B
N A
— t h IAVAVAVAVAVAVAVAVAVAVAVAV,
Hband_zg; Ay, ask"'zgjk p \
sk ik
" Kk K'

e and % /A/S/ » ™

1 c t t t T
HCoqumb = E Z Vq [as,kJrq as',k—q ask as,k + aj,k+q a'j‘,k—q aj e aj,k N : isk:|
_all - NS / |
indices ' hd e h

e-e h-h %—chtion

I_Ilight—coupling — Z [ﬁ; ) E*(t) as,k aj,—k +ﬁsj ) E(t) a;r,k a;r,—k:|
inda}lcles — —

electron-hole pair annihilation and creation operators
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H = Hband + HCoqumb + Hlight—coupling

Show only basic structure:

H._ ,=¢a a
C AT AT "
HCoqumb:V a' a a a %f\/\/\/\/vvvvvvvw
. t At X
Hlight—coupling =E'aa+Ea a > | =
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Next:

About expectation values and Green's functions




Expectation values
peh (t) = < ah (t) ae(t)> interband polarization

f, (t) =(al(t)a,(t)) }
f.(t) = (&, (t)a,(t))

occupation functions

Two-time functions

P (1) = (&, (1) au(t)] .

f(t) = (al(t) & (t))] .
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Particle propagators

Ca) a'(t)) t later than t'

carries information about particle energy
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Hole propagators

(a'(th a(t) ) t' later than t
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G, (t,t)=(T. a,(t)a (t)) t——e—r>t
o = s L Se—
f, —> —00 e Teeeeeereeeeeenn——— vt

ift' later oncontourthant:  iG_(t,t)=—(a (t") a (t))

if t' earlier on contour than t: 1IG__(t,t") =+(a,(t) aj;(t )

Schwinger, J. Math. Phys. 2, 407 (1961); Keldysh, Sov. Phys. JETP 20, 235 (1965)



_ @ College of Optical Sciences -

v THe UNIVERSITY OF ARIZONA®

P2
@l @
tO — — 0 >. ....................................................
—> 00
to 9 _w ------------------------------------------- < ---------------------------------------------------
Sl
@ @

All one-particle Green's functions have "time arrow"

Gt t)=(T &, ant)) ¢ — t
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Usual propagators (non density-type)

t

< U iG, (L) =(a,(b)a(t))

arrow points forward in time
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tO — — 0 >. ....................................................
—> o0
to —) —QQ trereeresstesseszsssssassssessssassasessess < ...................................................
Sl
ee
"Density-type"
t < t'

arrow points backward in time

iG,,(t,t) =(al(t)a,(t))
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Next:

A diagram tool box
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v, K+0 v,,k'=q
T T X 1
] t AN f,
vk} g "
v, K v, K
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' —1 . crn oy —
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Next:

More about Green's functions, propagators
and Feynman diagrams
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The idea;

represent as perturbation series

<-|:c a, (t) a;(t ')> via Feynman diagrams

obtain expectation values
tig from equal-time limit

(T, a,(t) ap(t))|
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Perturbation theory: H=H,+ H"

i j dt" H, '(t")

N

(T.a,(t)al(t)) =(T.e™  a,(t)a ()

full Green's function

free particle operators
(propagators)

Feynman diagrams: expand exponential and factorize:

& =1 +iX— 2 4
2

<a1,i a‘l,ja‘IT,k a|T,|> :<a| y a1T,| ><al,j af,k>—<a| y ar,k><a|,j a|T,|>



_ @ College of Optical Sciences

N4 THE UNIVERSITY OF ARIZONA®

H'=0: t t'" GO t)=(T a () al ()
n m

H'-0:
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direct Coulomb interaction

exchange Coulomb interaction
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Rules and Regulations
(short version)

v

1. Draw all topologically distinct connected diagrams with two external points

2. Sum over all internal indices

3. Attach an additional factor of (-1) for each closed Fermion loop

Complete rules:

» Thermodynamic equilibrium: Fetter, Walecka, Quantum Theory of Many Particle Systems

= Optically excited semiconductors: Kwong, Binder, Phys. Rev. B 61, 8341 (2000)

= Semiconductors with quantized light: Kwong, Rupper, Binder, Phys. Rev. B 79, 155205 (2009)
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Wick's theorem: sum up all different graphs
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Wick's theorem: sum up all different graphs
< o + g +







Y
Y

All of them???
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«— = + + + o




_ @ College of Optical Sciences

N THE UNIVERSITY OF ARIZONA®

«— = + + + o




_ @ College of Optical Sciences -

N~ THe UNIVERSITY OF ARIZONA®

describes non-perturbative Coulomb correlation (including possible bound states)
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Next:

Third-order nonlinear optical response
and excitonic diagrams




_ @ College of Optical Sciences

N4 THE UNIVERSITY OF ARIZONA®

Dynamics-controlled truncation (DCT)
(Axt, Stahl, Z. Phys. B 93, 205 (1994))

€ A

Without optical excitation, no density-like propagators:

(a(tha, (t))

v

SN

t t'

earlier time later time

Green's function approach to DCT: Kwong, Binder, Phys. Rev. B 61, 8341 (2000)
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DCT: "Don't Counterpropagate in Time"

—> 0
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First-order polarization

p® (t)

(t,+) (t+¢&,+)

(a,(t) a,(t) )
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First-order polarization

p® (t)

(t,+) (t+¢&,+)

(8,(t) a,(t))
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sum up ladder diagrams: excitons

In 1s approximation: P, (k,q,t) =4.(k) p(g,t)

F A

relative e-h momentum

\

center-of-mass momentum =0
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DI | NI

N 7R

T LT

optically active

va

™)

LN

I

)

optically inactive

notation: |electron spin, hole spin)
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First order excitonic response

p+
h et
In 1s approximation:
inp =(s,~iy)p'—¢'(0) E'
dhijet
x with E"=d_E”
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The two basic third-order diagrams

(8,8, ) (8,8, )

h e | h e

direct electron exchange
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The two basic third-order diagrams

p(3) E*

E E

direct

Without Coulomb interaction,
this diagram is disconnected
(does not contribute)

p(s) E*

h e

electron exchange
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Phase-Space Filling (PSF)

\Lh eT Te h\L

E* p’

inp =(e,—iy)p -4 (0) E"+2A™ | p' F E"
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not possible: bhoel ) and |T1)

not optically active
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exciton-exciton
interaction
(1 of 4 contributions)

"direct” (::

"exchange"

excitons
q=0

. (Vvdir +Wexc)| p |2 p
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inp =(e —iy)p"— (PSFterm) +V™ | p' [ p

dh et fTebs nl

Hartree term zero, Fock term only ++

optically inactive

dh Met |e h 4
_I_ —_
cannotbe: |p" [ p
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VOLUME 73, NUMBER 24 PHYSICAL REVIEW LETTERS 12 DECEMBER 1994

Interacting Electron Theory of Coherent Nonlinear Response

M. 7. Maialle and L.J. Sham

Department of Physics, University of California, San Diego, La Jolla, California 92(0093-0319
(Received 11 July 1994)

FIG. 1. Diagrammatic representation for the y. processes.
For explanation, see text.
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Phase-space filling vs Hartree-Fock in FWM

inp, = (e,~iy)p, +2A pp.E, +V" plp,p,

PSF and HF contribute

FWM signal solely
due to Coulomb
Interaction
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PHYSICAL REVIEW A

VOLUME 42, NUMBER 9

Line shape of time-resolved four-wave mixing

M. Wegener and D. S. Chemla

AT&T Bell Laboratories, Holmdel, New Jersey 07733

S. Schmitt-Rink

AT&T Bell Laboratories, Murray Hill, New Jersey 07974

W. Schifer

Forschungszentrum Julich, Hochleistungsrechenzentrum, 5170 Julich, Federal Republic of Germany

\{
Py
1 V 1\‘3&0

TIME

FIG. 5. Graphical representation of the predictions of the
noninteracting two-level model of Ref. 3 for & pulses. The tem-
poral position of the two incident pulses is marked by the
spikes. Pulse 2 is displayed with twice the strength of pulse 1.
On the second line the two pulses overlap, which corresponds to
zero time delay. The light areas represent the square of the
magnitude of the third-order polarization as a function of time
for various time delays. The full area on the left is the energy of
the diffracted signal as a function of the time delay (i.e., the time
integral of the light area at a given time delay).

(Received 8 May 1990)

(b)

FIG. 7. Same as Fig. 5, but including local-field corrections.
Results for (a) a homogeneously broadened line and (b) a strong-
ly inhomogeneously broadened line are depicted. In contrast to
the noninteracting two-level model, Fig. 5, one also finds a sig-
nal for negative time delay. This additional signal, however, is
quite sensitive to inhomogeneous broadening and eventually
disappears completely for a strongly inhomogeneously
broadened line.

1 NOVEMBER 1990

homogeneously
broadened

inhomogeneously
broadened

negative delay time: pump first
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VOLUME 65, NUMBER 11 PHYSICAL REVIEW LETTERS 10 SEPTEMBER 1990

Effects of Coherent Polarization Interactions on Time-Resolved Degenerate Four-Wave Mixing

K. Leo,'*! M. Wegener. J. Shah, D. S. Chemla, E. O. Gibel," and T. C. Damen
AT& T Bell Laboratories, Holmdel, New Jersey 07733

S. Schmitt-Rink
AT&T Bell Laboratories, Murray Hill, New Jersey 07974

W. Schiifer

Forschungszentrum Jilich, Hochstleistungsrechenzentrum, D-5170 Jiilich, Federal Republic of Germany
(Received 13 April 1990)

-

ABSORPTION

08 09

PHOTON ENERGY (eV)

<o e . 20x I

; 10 I

* 16xIy

5x Iy
9x]
3x g 0

DIFFRACTED SIGNAL
DIFFRACTED SIGNAL

Iy

o 500
TIME DELAY (is) TIME DELAY (fs)

FIG. 3. DFWM signals in InGaAs/InAlAs vs time delay for
a lattice temperature of 5 K, 10-meV laser detuning, and FIG. 4. Calculated DFWM signals vs time delay for differ-
different excitation intensities. Inset: Sample absorption at 5 ent excitation intensities.
K and the pulse spectrum,

negative delay time: pump first
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Beyond Hartree-Fock: Excitonic Correlation Functions

Excitonic correlation functions:

G o SUfﬂ(Wdir _Wexc)

G < sum(W W)

+sum(WOlir +Wex")
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inp =(s —iy)p" —[45(0)—2A"" | p* ] E" Phase-space filling

HE | o4 12 4 Hartree-Fock
+V |p | P Coulomb interaction

+2p [ dt’ G (t-t) p'(t) p'(t)

Time-retarded
two-exciton

i p_* J‘_O:Odt, G+_(t—t') p+ (t') p_(t') correlations

(incl. biexciton)

Takayama, Kwong, Rumyantsev, Kuwata-Gonokami, Binder, Eur. Phys. J. B 25, 445 (2002)
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Same equation for the coherent third order interband polarization:

® Dynamics Controlled Truncation
Axt , Stahl, Z. Phys. B 93, 195 (1994)

e Hubbard operators, force-force correlation function
Oestreich, Schoenhammer, Sham, Phys. Rev. B 58,12920 (1998)

Cumulant expansions

Meier, Koch, Phys. Rev. B 59, 13202 (1999);
Hoyer, Kira, S.W. Koch, Phys. Rev. B 67, 155113 (2003)

Nonequilibrium Green’s functions
Kwong, Binder, Phys. Rev. B 61, 8341 (2000)

see also: Schafer, Wegener, Semiconductor Optics and Transport Phenomena
(Springer, Berlin, 2002)
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Degenerate FWM
(all fields at frequency )

pi (@) = 1" (0) E.(0) EL (@) + 1 (0) EL(0)E,.(0)E ()

7@ ~ [22) [ 77(@) ]{G™ (@) + V' + 26" (20)}

7@ ~ |7%) [2%(@)] G (20)

with 2V (w) ~ G™ (w) ~1/ yO(w)

w—¢&,+ly

» Takayama, Kwong, Rumyantsev, Kuwata-Gonokami, Binder, JOSA-B 21, 2164 (2004)
« Kwong, Takayama, Rumyantsev, Kuwata-Gonokami, Binder, Phys. Rev. B 64, 045316 (2001)
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HF: +6.3meV
correlations partly
cancel HF

80 -40 00 40 80
11Q-2¢ [meV]

biexciton resonance

Shift of biexciton =
correlation effect
beyond ()

-8.0 -40 00 40 80

hQ-2¢ [meV]

Takayama, Kwong, Rumyantsev, Kuwata-Gonokami, Binder, Eur. Phys. J. B 25, 445 (2002)
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G p' p

includes bound two-exciton states (biexciton)
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++ + +
G pp

only continuum states
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i%( aa)l= W(a'a')(aaaa)

corr

corr

Hierarchy of correlation functions

(aa) <« —(aaaa) <« —~>(aaaaaa) <> -
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Hierarchy of correlation functions

Proven:
< al+ . a: 81 o am> If initial e-h density zero, one has, exact to
order of E,
) S g = truncation of hierarchy
N m = factorization to yield closed set of

equations of motion
Axt, Stahl, Z. Phys. B 93, 205 (1994)

@ minimum order in
the external field

----------- dipole coupling to field
Coulomb interaction

@ interband polarization
@ 2e-2h correlation function

Figure:
Lindberg, Hu, Binder, Koch, Phys. Rev. B 50, 18060 (1994)
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Next:

Some experimental FWM data
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Fig. 1. Schematic of (a) the experimental geometry for time
resolving the polarization state of the emitted FWM signal, where
A/4 denotes quarter-wave plate; A/2, half-wave plate; SHG, sec-
ond-harmonic-generation crystal; and P1 and P2, polarizers; (b)
the orientation of the two linear input polarizations; and (c) the
polarization ellipse showing the azimuthal angle #gg and the
ellipticity angle e.

THE UNIVERSITY OF ARIZONA®

1016 J. Opt. See, Am. B/Vel. 13, No. 5/May 1995

Time-resolved measurements of the
polarization state of four-wave mixing

signals from GaAs multiple quantum wells

A. E. Paul, J. A. Bolger, and Arthur L. Smirl

Labaratary for Photenics and Quantum Electrenics, 100 Iowa Advanced
Technology Laboratories, University of Iowa, Iowa City, Jowa 52242-1000

]. G. Pellegrino

National Institute of Standards and Technology, Gaithersburg, Marvland 20899

lg>

Fig. 6. Schematic of the five-level two-particle system describ-
ing the ground state | g), the single-exciton states |e. ), the biexci-
ton state |b), and the unbound two-exciton state |2e). The solid
{dashed) lines represent transitions coupled by o+ (o-) light, A

biexciton binding energy, and w and » correspond to the

exciton and the biexciton dipole matrix elements, respectively.
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Fig. 2. Measurements of (a) the azimuthal angle #5; and (b)
the ellipticity angle £ as a function of time for selected angles
#12 between the two input polarizations for a total peak fluence
of 1.0 uJ/em?.  The curves connect the data points only as a
rough guide for the eye.

ldentified biexciton,
"local field" (HF),
and EID
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Signature of non-perturbative
continuum correlations

Le=~=1 D
b one s 0 = DBR (distributed
vty e— 09 8 Bragg reflector)
1} ' ‘I l: E
v : < :
\ : i:ﬂ 08 < semiconductor

quantum well
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| |

i

i
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*Yuiawnga,
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|

blue: experiment

)
c
=}
=
S 035 \ (Gonokami et al., 1997)
E (X,y.)
-
S 0f . === red: full theory *— >
n o G
2 05 N7 N
T of— _A_.......:' \_(i‘_*fl | green: 2nd Born
0 s ) TT=— (pump, probe, signal)
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» Kwong, Takayama, Rumyantsev, Kuwata-Gonokami, Binder, Phys. Rev. Lett. 87, 27402 (2001)
» Kuwata-Gonokami, Inoue, Suzuura, Shirane, Shimano, Phys. Rev. Lett. 79, 1341 (1997)
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identified importance
of EID and local field
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VoOLUME 81, NUMBEE. 15 PHYSICAL REVIEW LETTERS 12 OCTOBEE 1998
Coherent Dynamics of Excitonic Nonlinear Optical Response in the Nonperturbative Regime
Hailin Wang
Department of Physics and Oregon Center for Optics, University of Oregon, Eugene, Oregon 97403
H. Q. Hou and B.E. Hammons
Sandia Nationa! Laboratories, Aibuguergue, New Mexico 87185
(Received 24 June 1908)
microcavity FWM , n
i (a) ol
Fa) o O [ ‘Band fiing. Local field
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FIG. 1. Time-integrated FWM response for the upper (solid
lines) and lower (dashed lines) cavity-polariton modes. (a) At
zero exciton cavity detumng. (b)) The cavity meode 15 3 nm
below the hh exciton line center. The inset in (a) alse
shows FWNM responses near &, — ¢ =0 along the directions
of 2k; — k; ({dashed lines) and 2k — k; (dotted lines) for the
lower cavity-polariten mode.

Experiment

0 1 2 3 4 0 1 2 3 4
t,-t, (Normalized)

FIG. 3. Calculated time-integrated FWM response due to

mechanisms indicated in the figure, where we have assumed

a=0, e/l = —05, oNp/1l = 0.8, /00 = 0.05, and () =

25 meV. The time delay is normalized to the oscillation

period. Except for {c), FWM responses are identical for both

cavity-polariton modes. For (c), the sohd (dashed) line is for
the upper (lower) cavity-polariton mode.

Theory
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VOLUME 89, NUMBER 23 PHYSICAL REVIEW LETTERS 2 DECEMBER 2002
Quantum Interference of Virtual and Real Amplitudes in a Semiconductor Exciton System
Y.H. Ahn, S. B. Choe, J. C. Woo, and D. S. Kim™*
School of Physics, Seoul National University, Seoul 151-742, Korea
S.T. Cundiff and J. M. Shacklette
JILA, University of Colorado and National Institute of Standard and Technology, Boulder, Colorado 80309-0440
Department of Applied Physics, KonKuk Urmers:r\ Chungju, Chungbuk 380-701, Korea
(Received 7 March 2002; publlshed 18 November 2002)
(a) Aw Delay Stage (b)
Absorption /\
2 / \| T
m’A Sample k,
: . LA~ 1
OO k, PP 27 \
-4—»- \\ SP g T
@, @ N —g SAN 4
i ,f \Ze—'—é/ 2k,—k, E PRy L\ )

./ Refraction Pulse Shaper FWM %ﬁ I ) YA \ }Q&xs
FIG. 1. (a) Schematic diagram of the experiments for a % 7 ;. N Ly
simple two-level system whose natural frequency and damping = - /\/ \/\/ 1/1,~ 40
constant are w and 7y, respectively. Real amplitude at @, and 3 ez N TV
a virtual one at «; are simultaneously excited by two- = /\
color picosecond pulse. (b) Schematics of the experimental | _/w /\\ 1/, ~200
setup describing picosecond/femtosecond PP and FWM. P e
Spectrally broad 30 fs pulses are used as a probe. SP stands 3 2 _1 2 3

for spectrometer.

two-color pump
(at and below exciton)

= G(w, + w,)

Tlme Delay ( ps)

90° phase shift between FWM
and cross correlation
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Next:

Correlations beyond y ©
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plus:

V a*a*> )(aa)

V{a'a > (aaaa)

corr

=N

V{a'a aaaa>
np

(

(
V(a'a'aa) {

(

= renormalization of Vor G

= triexciton

HF

biexciton

"Incoh. density"

"Incoh. dens.

assist. trans."
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Six Wave Mixing

ks k6wm ,
A,
. v
kp
QW

=3k_—2k
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Six Wave Mixing
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VOLUME 85, NUMBER 9 PHYSICAL REVIEW LETTERS 28 AugusT 2000

Demonstration of Sixth-Order Coulomb Correlations in a Semiconductor Single Quantum Well

S.R. Bolton,* U. Neukirch,! L.J. Sham.* and D.S. Chemla

Department of Physics, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory,
I Cyclotron Road, MS 2-346, Berkeley, California 94720

V.M. Axt

Institut fir Theoretische Physik, Westfdlische Wilhelms Universitit Minster,
Wilhelm-Klemm-Strasse 10, D-48149, Minster, Germany
(Received 9 March 20:00)

Theory
2,895 _ 28301
>
2 n H "
2] coherent limit
5 28201
s 2.8151
‘9; 2 825 . 2.8354
2 1324 _ 2.830 ne e n
>
2520 ma %, poe] incoherent densities
.88 g
15,00 I.II:.I 2.8204
28154
2.815-
<1000 - : y 15“J0 20010 2.8354
delay (f=) n; H
_ 280} incoherent-density
FIG.1. Six-wave mixing emission measured in the {X. ¥, ¥} 3 . L.
configuration, shown over 3 orders of magnitude in emission 5 28251 aSS|Sted tranS|t|OnS"
intensity. 2 2620
2815] (c)

-1000 -500 0 500 1000 1500 2000

Experiment delay (1s)

FIG. 2. Theoretical calculations of SWM emission in the
{X.¥ ¥} configuration, shown over 3 orders of magnitude in
emission intensity: (a) calculation in the coherent limit CL
including ¥ and B (b) calculation including contributions of ¥,
B, and N, ie., the ID level; (c) calculation on the IDAT level
including the four- and six-point contributions ¥, B, N, and Z.
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PHYSICAL REVIEW B 66, 155301 (2002)

Biexcitonic effects in the coherent control of the excitonic polarization detected

in six-wave-mixing signals

T. Voss.® H. G. Breunig, I. Ruckmann, and J. Gutowski
Insfitut fiir Festkorperphysik, Universitar Bremen, PO. Box 330440, D-28334 Bremen, Germany

V.M. Axt and T Kuhn

Institut fir Festkorpertheorie, Westfalische Wilhelms Universitat Munster, Wilhelm-Klemm-Strasse 10, D-48149 Mimster. Germany
(Received 5 July 2002; published 1 October 2002)
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FIG. 2. Interferometric SWA signal measured for (x.x) colin-
early (top, with biexcitonic contributions) and {(e¥ o) cocircu-
larly (bottom, without biexcitonic contributions) polarized incident
beams at f4,;=0.0 ps. The corresponding FT spectra (right) are
each normalized to the value of w ., .

Experiment
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FIG. 3. Calculated interferometric SWM signal for (x.x) colin-
early (top) and (o™.e™) cocircularly (bottom) polarized incident
beams. Left panels: full theory. right panels: (solid) full theory,
(dashed) full theory without biexciton centributions, and (dot-
dashed) mean-field theory scaled by the mdicated factors. Param-
eters used in the calculations: electron mass m= 0.14mg. hole mass
my=0.6Tmy, my="free-electron mass, static dielectric constant e,
=87, mterband dephasing tmme T,=33 ps, and pulse area A
= (.07 for all three pulses.

Theory

mean field theory
full theory

without biexciton
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Eur. Phys. J. B 42, 175-180 (2004)
DOT: 10.1140/epjb/e2004-00360-4

Light-polarization and intensity dependence
nonlinearities in excitonic FWM signals

THE EUROPEAN
PHYSICAL JOURNAL B

of higher-order

M. Buck!, L. Wischmeier?, 8. Schumacher!, G. Czyeholl!, F. Jahnke!, T. Voss?, I Riickmann?, and J. Gutowski?

! Institute for Theoretical Physies, University of Bremen, 28334 Bremen, Germany
? Institute for Solid State Physies, University of Bremen, 28334 Bremen, Germany
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Fig. 2. Experiment: FWM signal vs. delay time for equal
intensities of both pulses which are linearly polarized enclosing
an angle of dpa = 75%. The pulse energies are varied from 4.8
to 12,2 pJ. Signal detection is at the speectral position of the
excitonic resonance.

Experiment

Fig. 5.

FWM Intensity [a.u.]

|
[5%] o

T 3

L (lr| L
tya [psl

Theoretical result for the same excitation and detec-

tion conditions as in Figure 2. The lowest intensity corresponds
to & Rabi energy of dE/Eg = 6.3 % 107% in units of the 3d ex-

citonic Rydberg energy Eg.

Theory
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FWM intensity (arb.)

Fig. 4. FWM traces for various excitation intensities, as labeled

resonance (X); right, detection energy at the exciton—biexciton
resonance (X—-XX).
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1218 J. Opt. See. Am. B/ Vol. 18, Mo, 9/ September 2001

Spectral signatures of y!*) processes in four-wave
mixing of homogeneously broadened excitons

W. Langhein
Expernmentelle Fhysik EIIb, Universitdt Dorfm ownd, (Mto-Hohn Strasse 4, 44527 Dortmund, Germary

T. Meler and 5. W. Koech
Department of Physics and Materdal! Soderces Comter, Philipps University, Repthof 5, DL365032 Marborg, Germany

I. M. Hvam
Reseamh Center COM, Tachrical Unfversity of Denmark, Building 349, 2800 Ireghy, Denmork
detection at X detection at XX
o . t:lelet‘,tionlat)(I . deieclior: al)():{ 10 P
Jay

beats with inverse ——_
biexciton binding
energy period

collinear

Yttinear (TT)\

-——0.125 (only ™)
——D25
——0.5

%—v—i

FWM intensity{art. units)

cross-linear (T-)

cross-linear

delay 1, (ps) 2 0 2z 4 % IR T I
delay 1,(ps)

Fig. 6. Calculated FWM traces for various excitation intensi-

I, = 309 nJ/em?). A%ill traccfs are scaled by the Sme_facmr- ties, as labeled. Top, collinearly polarized excitation (]1); bot-
Top, collinearly polarized excitation (]1); bottom, cross-linearly tom, cross-linearly polarized excitation ({—); left, detection en-
polarized excitation (]—); left, detection energy at the exciton ergy at the exciton resonance (X); right, detection energy at the

exciton—biexciton resonance (X-XX). The symbols indicate the
calculated time delays; the lines are guides for the eye.

Experiment Theory

See also: Meier, Koch, Phys. Rev. B 59, 13202 (1999)
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Spectral signatures of y!*) processes in four-wave
mixing of homogeneously broadened excitons

W. Langhein
Expernmentelle Fhysik EIIb, Universitdt Dorfm ownd, (Mto-Hohn Strasse 4, 44527 Dortmund, Germary

T. Meler and 5. W. Koech
Department of Physics and Materdal! Soderces Comter, Philipps University, Repthof 5, DL365032 Marborg, Germany

I. M. Hvam
Reseamh Center COM, Tachrical Unfversity of Denmark, Building 349, 2800 Ireghy, Denmork
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Electromagnetically-induced transparency (EIT)
linear spectrum
nonlinear, experiment
i nonlinear, theory
biexciton ' ' o !
pump +
1s exciton state 10

3
probe (signal) — w
O

groundstate Z 210
aa)
v
@)
N

2 410

EIT dip at <,
h a)pump + h a)probe = gbiexciton
810
shifts with increasing pump intensity

1.526 1.528 1.530

probe frequency [eV]

Phillips, Wang, Rumyantsev, Kwong, Takayama, Binder, Phys. Rev. Lett. 91, 183602 (2003)
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Electromagnetically-induced transparency (EIT)
linear spectrum
nonlinear, experiment
i nonlinear, theory
7— biexciton l A 7 I
% %
Ps- Ep+ Ep+ S./\ "
X X
probp h e i

exciton

renormalization,

"+ —" biexciton in Syk 410
gas of "+" excitons

E& >

b28 1.530

guency [eV]

Phillips, Wang, Rumyantsev, Kwong, Takayama, Binder, Phys. Rev. Lett. 91, 183602 (2003)
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Triexciton states?

. d
|a<aa>

corr

= V(a'a'a'a'(aaaaaa)

corr

triexciton
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Next:

Few-level systems
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i two-exciton continuum
biexciton

1s exciton states

Few level models:

= are useful for conceptual analysis of optical nonlinearities
= can be used in "double-sided Feynman diagrams"
(e.g. in Li, Zhang, Borca, Cundiff, Phys. Rev. Lett. 96, 057406 (2006))

Question: can they be strictly related to many-particle theory?

Answer: yes, at least in ¢ regime!



College of Optical Sciences

THE UNIVERSITY OF ARIZONA®

week endin
PRL 96, 057406 (2006) PHYSICAL REVIEW LETTERS 10 FEBRUARY 2006

Many-Body Interactions in Semiconductors Probed by Optical Two-Dimensional Fourier
Transform Spectroscopy

Xiaoqin Li.! Tianhao Zhang,l’2 Camelia N. Borca,! and Steven T. Cundiff®

VILA, University of Colorado and National Institute of Standards and Technology, Boulder, Colorado 80309-0440, USA
“Department of Physics, University of Colorado, Boulder, Colorade 80309-0320, USA
(Received 3 August 2005; published 7 February 2006)

(a) Evolution Mixing Detection (b) (a)
10 IV 10 2 A 2 il Py 20 2, 10
T R 1 w2 Awl” Hfﬂﬂ?ﬁﬂf'
s ok Aol (ol Awe 2 Ao 02
Qutput lens view un ; m UD un : un \ UD \ m i
FIG. 1 (color). (a) Schemalic of the excitation sequence show- BA RB | RC | | RD |
ing the relevant time intervals. Note the dashed line indicating
that the phase during time period ¢ is related to the phase (b), 10 A 10 10,7 20 N7, 2 20 T 10
evolution during time 7. (b) Diagram showing geometry of % 1
excitation pulses and generated signal. 1 00 12 00 2 00 4] 00
10 10 10 A 20 20 20
o || Aol Aw|An| e 7w
g 52 L_NA | NC L_NB | ND
§ 0 o ::‘1?90
B H N FIG. 2. Feynman diagrams for all possible quantum mechani-
é‘m %5"5 Ijm cal pat.hways for (a) rephasing and (b) nonrephasing measure-
B 2 1000 ments in a V system, where 0, 1, 2 corresponds to crystal ground
T g state, heavy-hole, and light-hole excitons, respectively.
B R W W I '
FIG. 3 (color). Linear absorption, excitation pulse spectrum 1 1
(a) and experimental real spectra for the rephasing (b) and see RObert W Boyd’ Nonllnear OptICS’
nonrephasing (c) pulse sequences. Both spectra in (b) and (c) 1
are normalized to the most intense peak. (Academlc Press’ London’ 1992)
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d

Initial condition:

ihapij = Zk:( I_Iikpkj o /Oikl_I K] ) system in ground state

P, (t) =Ny /[l: P, (t)

T

density of few-level 'atoms'

P (t) - pexc+,g(t)+ ZO[I:clon,exch(t) + Zﬂ:pm,exw (t)
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h
T2 dt GPM(t-t) p*
j_oodt' GPre (t—t') p (
+ terms proportional to »'s
inp’=(e,~ir)p’ -[¢.(0)-2A™" | p* ] E"
+V HF | p+ |2 p+

+2 p+* j_oo dtl G++(t_tl) p+(tl) p+(tl)

+p [ dUGT(t-t) pr(t) p (1)

Phase-space filling

Hartree-Fock
Coulomb interaction

Time-retarded
two-exciton
correlations

(incl. biexciton)
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We have set Z|an|2 =1

1
Vzl_EZ‘ﬂn‘ :

1
V+F3rhen = Ez‘ﬁn‘ i n

.
VP sl |25,

ﬂ:5n+ e_;l(zngﬁn+ -7 )(t-t) Bron,

GE™(t-1) =£—igj9(t—t')z

i . (2646, )(tt
Gf—hen (t_t’):(_%jg(t_t,)zanéne h( oozl )anén
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Identification of few-level parameters

o s (0)° |1 |?

o AP 1] 415(0) |

<V HF
<~ 0
approximate

“— (more 'atomic’ levels
yield better agreement)

Kwong, Rumyantsev, Binder, Smirl, Phys. Rev. B 72, 235312 (2005)
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Example: 7-level system
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Microscopic theory 7-level system
— 4
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Microscopic theory
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Next:

FWM instabilities
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probe kS —

FWM
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k diffracted light
s (probe direction)

Fwm K,
pump k —_—
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— pump wave + signal wave
|

wave mixing

4
FWM wave

pump wave + FWM wave
I

wave mixing

\
signal wave

feedback and possible dynamic instability
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:> self consistency (positive feedback)

assume P ()= P, g and p.(t) = P (t) e
p, (1) =P, (t) e

with

Linear stability analysis:

A=A e

det(M — 1) =0

Time
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Stimulated polariton scattering in semiconductor microcavities

» Savvidis, Baumberg, Stevenson, Skolnick, Whittaker, and Roberts,
Phys. Rev. Lett. 84, 1547 (2000)

= Huang, Tassone, Yamamoto, Phys. Rev. B 61, R7854 (2000)

= Ciuti, Schwendimann, Deveaud, Quattropani, Phys. Rev. B 62, R4825 (2000)

= Stevenson, Astratov, Skolnik, Whittaker, Emam-Ismail, Tartakovskii, Savvidis,
Baumberg, Roberts, Phys. Rev. Lett. 85, 3680 (2000)

» Savasta, DiStefano, Girlanda, Phys. Rev. Lett. 90, 096403 (2003)

= Savasta, DiStefano, Savona, Langbein, Phys. Rev. Lett. 94,246401 (2005)

= Klopotowski, Martin, Amo, Vina, Shlykh, Glazo, Malpuech, Kavokin, Andre,
Solid State Commun. 139, 511 (2006)

» Kasprzak, Richard, Kundermann, Baas, Jeambrun, Keeling, Marchetti, Szymanska,
Andre, Staehli, Savona, Littlewood, Deveaud, LeSiDang, Nature 443, 409 (2006)
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Stimulated polariton scattering in semiconductor microcavities

» Savvidis, Baumberg, Stevenson, Skolnick, Whittaker, and Roberts,
Phys. Rev. Lett. 84, 1547 (2000)
= Huang, Tassone, Yamamoto, Phys. Rev. B 61, R7854 (2000)
= Ciuti, Schwendimann, Deveaud, Quattropani, Phys. Rev. B 62, R4825 (2000)

= Stevenson, Astratov, Skolnik, Wig C .
The publications in 2000 spurred major

activities in bosonic aspects of excitons.
In this tutorial, only FWM aspects are

covered, not the bosonic aspects.
= Klopotowski, Martin, Amo, Vina, Shly azo, Malpuech, Kavokin, Andre,

Solid State Commun. 139, 511 (2006)
» Kasprzak, Richard, Kundermann, Baas, Jeambrun, Keeling, Marchetti, Szymanska,
Andre, Staehli, Savona, Littlewood, Deveaud, LeSiDang, Nature 443, 409 (2006)

Baumberg, Roberts, Phys. Rev.
= Savasta, DiStefano, Girlanda, P
= Savasta, DiStefano, Savona, La
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neglecting polariton
effects in exciton-exciton
scattering

frequency (meV)
o

LPB

o
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= On LPB, two-exciton correlation dominated by Hartree-Fock
= Small excitation-induced dephasing at LPB facilitates instability
(in contrast to single quantum well®) )

» Savasta, DiStefano, Girlanda, Phys. Rev. Lett. 90, 096403 (2003)
» Schumacher, Kwong, Binder, Phys. Rev. B 76, 245324 (2007)

« ")Schumacher, Kwong, Binder, Europhys. Lett. 81, 27003 (2008)
« ")Schumacher, Kwong, Binder, Smirl, Phys. Stat. Sol. (b) 246, 307 (2009)
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» Savvidis, Baumberg, Stevenson, Skolnick, Whittaker, and Roberts, Phys. Rev. Lett. 84, 1547 (2000)
* Huang, Tassone, Yamamoto, Phys. Rev. B 61, R7854 (2000)
« Ciuti, Schwendimann, Deveaud, Quattropani, Phys. Rev. B 62, R4825 (2000)
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Low-intensity directional manipulation
semiconductor proposal for low-intensity switch demonstrated in
Dawes, llling, Clark, Gauthier, Science 308, 672 (2005)
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» Schumacher, Kwong, Binder, Smirl, Phys. Stat. Sol. RRL 3, 10 (2009)
» Dawes, Gauthier, Schumacher, Kwong, Binder, Smirl, Laser & Photon. Rev. (2009)
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During the last 20 years, FWM techniques developed by
D.S. Chemla and others have given us deep insight

Into many-particle processes in optically excited
semiconductors, including the observation of excitonic
correlation effects.

The physical processes underlying these effects can
be visualized (and analyzed) with the help of Feynman

diagrams.

This tutorial talk is available at

www.optics.arizona.edu/binder
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