# Theory of transversal light forces in semiconductors

### R. Binder

College of Optical Sciences and Department of Physics
The University of Arizona

## **Markus Lindberg**

Åbo Akademi, Finland

Supported by JSOP, Academy of Finland, Stiftelsen för Åbo Akademi

#### Light forces and optical tweezers



- Transversal light force (light gradient force) verified for atoms, molecules, bacteria, dielectric spheres etc.
- <u>Example:</u> controlled transport of gaseous Bose-Einstein condensate over 44 cm (Ketterle group, PRL 88, 020401 (2002))

## Semiconductor: Electronic Excitation Moving



#### Transversal Force on Electrons and Holes

$$\left| \vec{F}_{transv} \left( \vec{R} \right) = -\hbar \nabla_{\vec{R}} \left( \left| \vec{\mu} \cdot \vec{E} \left( \vec{R} \right) \right|^2 \right) \frac{\Delta \left( \vec{K} \right)}{\gamma^2 + \Delta \left( \vec{K} \right)^2} \right|$$



- Same structural form as for atoms
- Different sign than for atoms
- Practically, restricted to **repulsive force** (since E-field needs to be red detuned,  $\Delta(K)>0$ )

#### Spatial center of carrier density distribution



- Spatial displacement after E-field gone
- Non-zero velocities after E-field gone

Binder, Lindberg, J. Phys. C 18, 729 (2006)