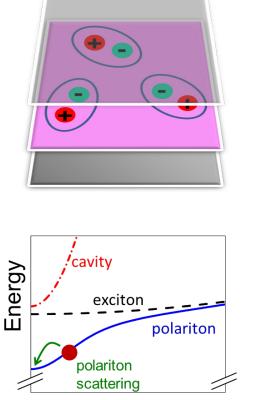
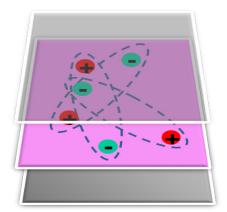
Demonstration of the polaritonic Bardeen-Cooper-Schrieffer state

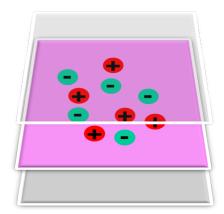
N.H. Kwong, R. Binder

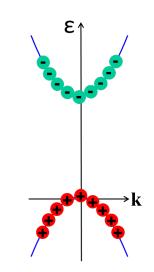
University of Arizona


In collaboration with Hui Deng, University of Michigan

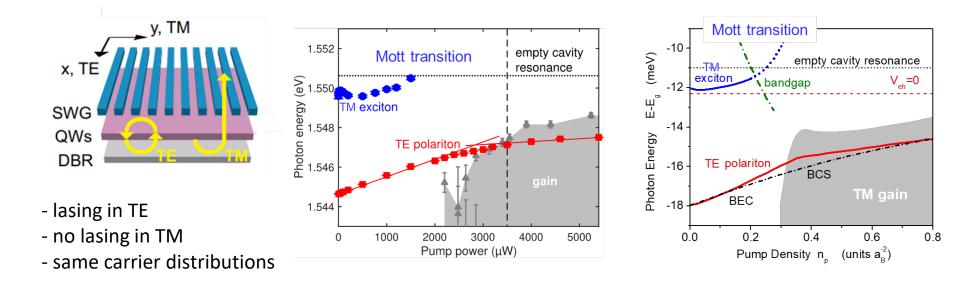
Supported by NSF DMR-1839570


Polariton BEC*


Polariton BCS**


Photon Laser

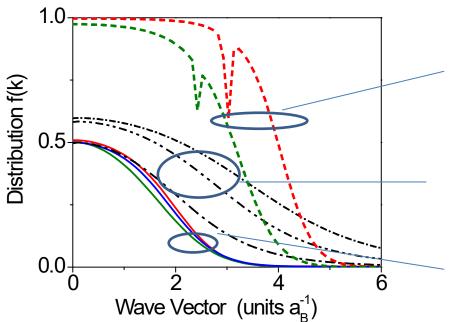
Wave Vector


well established (theory and experiment)

mostly theory well established

well established (theory and experiment)

*BEC = Bose-Einstein condensate, **BCS = Bardeen, Cooper, Schrieffer


Comparison experiment vs. theory*

- TM: the 'usual', first Mott transitions, then optical gain
- TE: lasing threshold above Mott transitions inferred from TM, rules out BEC- no jump of emission frequency to cavity, rules out photon laser

*Hu, Wang, Kim, Hui Deng, Brodbeck, Schneider, Hofling, Kwong, Binder, Phys. Rev. X 11, 011018 (2021)

	Polariton BEC	Polariton BCS	Photon Laser
Transition	smooth crossover smooth crossover		
Carrier density	$n \ll n_{Mott}$	$n \ge n_{Mott}$	$n > n_{Mott}$
e-h distribution	far below Fermi degeneracy, no inversion	below Fermi degeneracy, small inversion	Fermi degenerate, strong inversion
Gain type	bosonic	fermionic	fermionic
Quasi-particles	exciton-polariton with bound e-h pair	e-h-polariton with bound e-h pair	e-h plasma (unbound pairs)
Emission frequency	below cavity	below cavity	close to cavity resonance
Excitation spectrum	gap , by exciton binding & photon coupling	BCS-like gap by e-h pairing & photon coupling	gap possible (light-induced spectral hole)

Photon laser model:

- Fermi degenerate distribution functions
- can exhibit spectral hole

Ideal polariton BCS:

- no Fermi degeneracy in distribution functions
- distribution functions not much larger than 0.5
- cannot exhibit spectral hole

Full calculation modeling experiment

Conclusion: distribution functions are open-dissipative system analog to ideal polariton BCS system