

Many-particle theory of all-optical polarization switching in semiconductor quantum wells

I. Rumyantsev, N.H. Kwong, and R. Binder

College of Optical Sciences and Department of Physics The University of Arizona

E. J. Gansen and A. L. Smirl

Laboratory for Photonics and Quantum Electronics The University of Iowa

Supported by ONR, DARPA, JSOP, COEDIP

Theoretical issues:	 understanding of switching process with predictive theory identification of main many-particle process study of parametric dependencies of switch prediction of possible future optimization
	 study of parametric dependencies of switch

Experimental Scheme

Band structure & selection rules

X-polarized signal field: equal-strength σ + and σ - transition (no rotation)

"+" polarized control field \Rightarrow unequal σ + and σ - transitions \Rightarrow elliptical polarization of signal output

Time-integrated signal

Rumyantsev, Kwong, Binder, Gansen, Smirl, Phys. Rev. B 69, 235329 (2004)