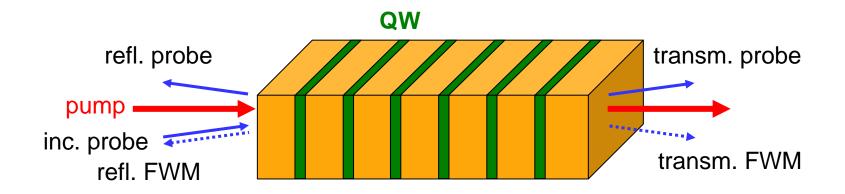


Many-particle Effects in the Nonlinear Polarization Rotation in Semiconductor Quantum Well Bragg Structures

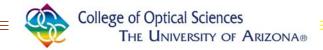

D.T. Nguyen, N.H. Kwong, Z.S. Yang, R. Binder

College of Optical Sciences and Department of Physics The University of Arizona

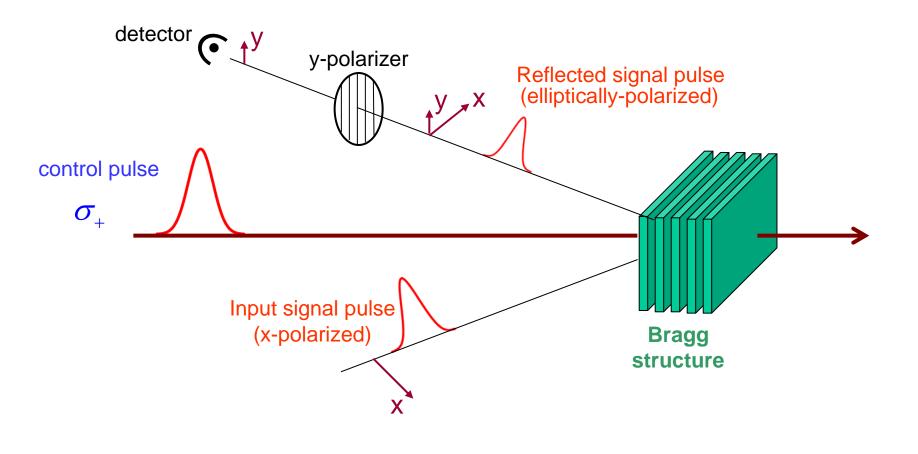

A. L. Smirl

Laboratory for Photonics and Quantum Electronics The University of Iowa

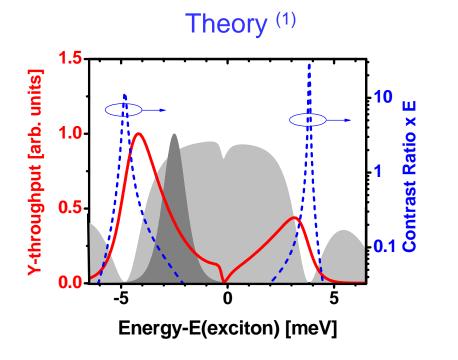
Supported by ONR, DARPA, JSOP, COEDIP



Bragg-spaced multiple quantum wells



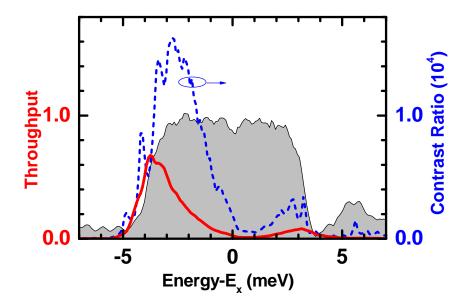
One-dimensional resonant photonic bandgap structure


cf. lvchenko *et al.*, Superlattices and Microstructures 16, 17 (1994), Stroucken *et al.*, PRB 53, 2026 (1996); Prineas *et al.*, PRB 61, 13863 (2000)

Switch Geometry

College of Optical Sciences THE UNIVERSITY OF ARIZONA®

Pump-induced difference in the "+" and "-" signal reflectivities leads to a non-zero y-signal component


E = system leakage fraction (typically \sim 10 ⁻⁴)

- Contrast ratio at lower egde ~ 10^4 or 40 dB
- Max. throughput is 12% of input x-signal intensity
- Switching time control-pulse width limited

(1) Nguyen, Kwong, Yang, Binder, Smirl, Appl. Phys. Lett. 90, 181116 (2007)

College of Optical Sciences The University of Arizona®

Experiment ⁽¹⁾

Large throughput and contrast ratio at lower band gap

System leakage may contain frequency dependent rotation from Bragg structure anisotropy

- Contrast ratio > 40 dB
- Max. throughput is 60% of input signal intensity
- Switching time ~ 1 ps (control-pulse width limited)
- Switching energy ~ 14 $\mu J/cm$ 2
- T=10K

(1) Jonston et al., Appl. Phys. Lett. 87, 101113 (2005)