

Many-Particle Theory of Luminescence and Absorption from Excited Semiconductors

G. Rupper, N.H. Kwong, Rolf Binder

College of Optical Sciences and Department of Physics The University of Arizona

Supported by AFOSR, JSOP

Microscopic theory of absorption/luminescence

Maxwell's equations (↔ photon Green's function, valid for incoherent light, photon distribution, photon Wigner function, luminescence reabsorption, exciton polariton dispersion, e-h continuum polariton effects)

Optical polarization (↔ recombination rate, optical susceptibility)

Microscopic theory of absorption/luminescence

T-matrix (\leftrightarrow non-perturbative e-h, e-e, h-h correlation)

Dyson equation (↔ quasi-particles, energy renormalization, damping and dephasing, chemical potential, density, ionization degree)

Spectral functions of electrons and holes

The contour plots of the spectral functions show a broadened single-particle parabola and side-bands due to exciton effects described by the T-selfenergy.

Rupper, Kwong, Binder, Phys. Rev. B 79, 155205 (2009)

Luminescence and absorption spectra

Luminescence and absorption of excited bulk GaAs under the assumption of quasi-thermal equilibrium. The density-dependent modification contain phase-space filling, Hartree-Fock mean-field effects, and excitonic effects from a partially ionized exciton gas within the T-matrix approximation.

Rupper, Kwong, Binder, Phys. Rev. B 79, 155205 (2009)