Aberrations Panel

The Aberrations Panel is used to add aberration into the lens calculations.

Aberration Calculation Portion :

aberration_panel_none


None

No aberration calculations are performed.


Custom File

The aberration data is loaded from the specified file.  Here, opd1 contains the aberration data:

abberation_panel.custom

The aberration data should be stored in the project’s optics folder.

Ray Trace

Use a Ray Trace to calculate the aberrations.  If the “Save Result” check box is checked, then the resulting aberration calculation is saved to the specified file.

abberation_panel.raytrace

Here, the Ray Trace calculation is stored in a file called opd1.mat:

abberation_panel.raytrace2

The output of the ray trace calculation is stored in the project’s optics folder.

Zernike

Use the Zernike polynomial coefficients, which are found in the specified Zernike coefficient file, to calculate the aberrations.  Here, the file zerndata.mat contains the required Zernike coefficients:

abberation_panel.zernike

Zernike coefficient files should be stored in the project’s optics folder.   The .mat file must contain the vector zvec. This file needs to be created before being able to use this function. To create it, first set up a zvec variable like the one in the example below. Afterwards use this command: save “filepath\filename” zvec. Remember that this should be in the project’s optics folder. The information box titled Zernike File should show the correct directory to save the file in. To edit the file just load it into the Matlab workspace and save it again.

zvec has the following format:

zvec(1) = order of the Zernike expansion.

zvec(2) = sampling in the pupil.  This is the number of points across the pupil diameter that are used to calculate the initial Zernike distribution.  The Zernike phase map resulting from the calculation will be resampled according to the sampling Npupil specified in the optics module, so it is recommended that zvec(2) be greater than Npupil.

zvec(3) through zvec(i) contain the Zernike coefficients as specified in Malacara, Optical Shop Testing.

Example:

zvec = [3 100 0 0 0 0 0 0 0 0 0.33 0];

This zvec produces a third-degree Zernike expansion that uses 100 points across the diameter of the pupil for the initial calculation.  This particular choice of coefficients exhibits 1.0 wave of coma in the y direction with 0.33 waves of tilt.

Zernike Polynomials Unm Up to Fourth Degree

zvec(i)
component

n

m

n-2m

Zernike polynomial

Monomial representation

Meaning


zvec(3) 0 0 0 1 1 Constant Term

zvec(4) 1 0 1 ρsin(θ) x Tilt in x direction
zvec(5) 1 1 -1 ρcos(θ) y Tilt in y direction

zvec(6) 2 0 2 ρ2sin2(θ) 2xy Astigmatism with axis at +/- 45 degrees
zvec(7) 2 1 0 2-1 -1 + 2y2 + 2×2 Focus shift
zvec(8) 2 2 -2 ρ2cos(2θ) y2 – x2 Astigmatism with axis at 0 or 90 degrees

zvec(9) 3 0 3 ρ3sin(3θ) 3xy2 – x3
zvec(10) 3 1 1 (3ρ3-2ρ)sin(θ) -2y + 3xy2 + 3×3 Third order coma along x axis
zvec(11) 3 2 -1 (3ρ3-2ρ)cos(θ) -2y + 3y3 + 3x2y Third order coma along y axis
zvec(12) 3 3 -3 ρ3cos(3θ) y3 – 3x2y

zvec(13) 4 0 4 ρ4sin(4θ) 4y3x – 4x3y
zvec(14) 4 1 2 (4ρ4-3ρ2)sin(2θ) -6xy + 8y3x + 8x3y
zvec(15) 4 2 0 (6ρ4-6ρ2+1) 1 – 6y2 – 6×2 + 6y4 + 12x2y2 + 6×4 Third order spherical aberration
zvec(16) 4 3 -2 (4ρ4-3ρ2)cos(2θ) -3y2 + 3×2 + 4y4 – 4×4
zvec(17) 4 4 -4 ρ4cos(4θ) y4 – 6x2y2 + x4