27_qubits

Accurate microwave control and real-time diagnostics of neutral-atom qubits

 


Rakreungdet, Worawarong, Lee, Jae Hoon, Lee, Kim Fook, Mischuck, Brian E., Montano, Enrique, Jessen, Poul S.
 

We demonstrate accurate single-qubit control in an ensemble of atomic qubits trapped in an optical lattice. The qubits are driven with microwave radiation, and their dynamics tracked by optical probe polarimetry. Real-time diagnostics is crucial to minimize systematic errors and optimize the performance of single-qubit gates, leading to fidelities of 0.99 for single-qubit rotations. We show that increased robustness to large, deliberately introduced errors can be achieved through the use of composite rotations. However, during normal operation the combination of very small intrinsic errors and additional decoherence during the longer pulse sequences precludes any significant performance gain in our current experiment.
 

Back | Full Text

26_hyperfine

Quantum control of the hyperfine-coupled electron and nuclear spins in alkali-metal atoms

 


Merkel, Seth T., Jessen, Poul S., Deutsch, Ivan H.
 

We study quantum control of the full hyperfine manifold in the ground-electronic state of alkali-metal atoms based on applied radio frequency and microwave fields. Such interactions should allow essentially decoherence-free dynamics and the application of techniques for robust control developed for NMR spectroscopy. We establish the conditions under which the system is controllable in the sense that one can generate an arbitrary unitary map on the system.We apply this to the case of 133Cs with its d=16 dimensional Hilbert space of magnetic sublevels in the 6S1/2 state, and design control wave forms that generate an arbitrary target state from an initial fiducial state. We develop a generalized Wigner function representation for this space consisting of the direct sum of two irreducible representations of SU2, allowing us to visualize these states. The performance of different control scenarios is evaluated based on the ability to generate a high-fidelity operation in an allotted time with the available resources. We find good operating points commensurate with modest laboratory requirements.
 

Back | Full Text

25_chaos

Chaos, entanglement, and decoherence in the quantum kicked top

 


Ghose, Shohini, Stock, Rene, Jessen, Poul, Lal, Roshan, Silberfarb, Andrew
 

We analyze the interplay of chaos, entanglement, and decoherence in a system of qubits whose collective behavior is that of a quantum kicked top. The dynamical entanglement between a single qubit and the rest can be calculated from the mean of the collective spin operators. This allows the possibility of efficiently measuring entanglement dynamics in an experimental setting. We consider a deeply quantum regime and show that signatures of chaos are present in the dynamical entanglement for parameters accessible in an experiment that we propose using cold atoms. The evolution of the entanglement depends on the support of the initial state on regular versus chaotic Floquet eigenstates, whose phase-space distributions are concentrated on the corresponding regular or chaotic eigenstructures. We include the effect of decoherence via a realistic model and show that the signatures of chaos in the entanglement dynamics persist in the presence of decoherence. In addition, the classical chaos affects the decoherence rate itself.
 

Back | Full Text