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We analyze the interplay of chaos, entanglement, and decoherence in a system of qubits whose collective
behavior is that of a quantum kicked top. The dynamical entanglement between a single qubit and the rest can
be calculated from the mean of the collective spin operators. This allows the possibility of efficiently measur-
ing entanglement dynamics in an experimental setting. We consider a deeply quantum regime and show that
signatures of chaos are present in the dynamical entanglement for parameters accessible in an experiment that
we propose using cold atoms. The evolution of the entanglement depends on the support of the initial state on
regular versus chaotic Floquet eigenstates, whose phase-space distributions are concentrated on the correspond-
ing regular or chaotic eigenstructures. We include the effect of decoherence via a realistic model and show that
the signatures of chaos in the entanglement dynamics persist in the presence of decoherence. In addition, the
classical chaos affects the decoherence rate itself.
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I. INTRODUCTION

In classical mechanics, the chaotic behavior predicted for
nonintegrable systems can be qualitatively different from the
regular dynamics of integrable systems �1�. The concept of
regular versus chaotic dynamics at the quantum level has
been more difficult to define as there is no clear measure of
chaos in the quantum regime. Understanding the correspon-
dence between quantum and classical evolutions in chaotic
systems is a central problem in quantum mechanics and a
major focus of the field of quantum chaos. From a practical
perspective, recent work �2� has shown that classical chaos
can affect the implementation of quantum computing algo-
rithms, and has fueled interest in identifying the effects of
chaos on quantum information theoretic properties such as
quantum correlations or entanglement, and fidelity �3�. En-
tanglement is thought to be a fundamental resource for many
quantum information processing applications, and the effect
of chaos on the dynamical generation of entanglement has
been a topic of several studies �4–13�. The presence of chaos
can also increase the rate of entanglement generation be-
tween a system and its environment �14,15�, leading to in-
creased decoherence and possibly stricter limitations on co-
herent quantum information processing.

In this paper, we explore the effect of chaos on entangle-
ment and decoherence in a quantum kicked top �16,17�. We
treat the kicked top as a collection of spin-1 /2 systems or
qubits and find an efficient measure of entanglement between
a single qubit and the rest. We focus on dynamics in a deeply
quantum regime rather than the more commonly studied
semiclassical regime, in order to probe the boundary between
quantum and classical behavior and try and identify truly
“quantum” chaos. Our motivation to study the quantum re-
gime also arises from the possibility of performing experi-
mental studies of this system. We identify signatures of
chaos in the entanglement dynamics in a quantum regime

that can be accessed in an experiment that we propose using
cold atoms.

The quantum kicked top has become a standard paradigm
for theoretical studies of quantum chaos but has not yet been
studied in experiments. Here, we propose and analyze a pos-
sible experimental realization based on cesium atomic spins
interacting with laser light and a pulsed magnetic field. The
kicked top Hamiltonian can be implemented by controlling
the evolution of the ground hyperfine �electron+nuclear�
spin of each cesium atom via laser and magnetic field inter-
actions. With a maximum ground state hyperfine spin of F
=4 �18�, this system lies far from the semiclassical regime
that is usually considered, since the size of � relative to the
total phase space is roughly 0.1. We study entanglement dy-
namics for parameters accessible with this system. Our
analysis shows that signatures of chaos can be observed even
if the atoms undergo decoherence due to spontaneous emis-
sion, and that chaos affects the decoherence rate itself. The
cold atom experimental system provides a clean setting in
which to perform fundamental studies of quantum-classical
correspondence and develop a toolbox of quantum control of
multiqubit systems undergoing complex dynamics.

A quantum kicked top with total angular momentum j can
be decomposed into N=2j spin-1 /2 subsystems �qubits� �9�.
We focus on the entanglement between a single qubit and the
remaining k=N−1 qubits �henceforth called 1:k entangle-
ment�. The 1:k entanglement is of relevance to our proposed
experiment with cold atoms because, as we will show, it
corresponds to entanglement between electron and nuclear
spin in a single atom. Measurement of entanglement is usu-
ally experimentally challenging as it would require perform-
ing complete state tomography. For the case of the kicked
top, we derive a simple expression for a 1:k entanglement
measure in terms of the expectation values of the total spin
of the N qubits. Hence, the 1:k entanglement can be effi-
ciently monitored by simply measuring the evolution of the
mean total spin vector, thereby avoiding the need to perform
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complete state tomography. Although this result is generally
applicable to any kicked top experimental realization, it is
particularly useful for the cold atom experiments proposed
here, in which the evolution of the mean spin vector can be
efficiently measured in real time �19,20�.

We have performed numerical simulations of the kicked
top dynamics to study the evolution of entanglement. In or-
der to compare quantum and classical dynamics, we pick
initial quantum states that are localized in regular versus cha-
otic regions of the classical phase space and analyze the evo-
lution of the 1:k entanglement as we vary the initial condi-
tions from the regular to the chaotic regime. Our results
show that the long term 1:k entanglement dynamics exhibit
signatures of classical chaos even in the extreme quantum
regime considered here. Initial states localized in regular re-
gions of the classical phase space exhibit quasiperiodic col-
lapses and revivals, whereas initial localized states centered
in chaotic regions quickly spread out and do not exhibit qua-
siperiodic entanglement dynamics. These signatures are
similar to those previously identified in the 2:k entanglement
�9� between two qubits and the rest in a semiclassical regime.
We explain the entanglement behavior by extending the
analysis in �10� to the quantum regime. Quasiperiodicity ver-
sus irrregular dynamics depends on the support of the initial
state on regular versus chaotic eigenstates of the Floquet
evolution operator as shown in �10�. The differences in
eigenstate decomposition for initial states centered in regular
versus chaotic regions are limited by the small size of the
spin considered here, and has no significant effect on the
initial rate of entanglement generation as is the case for the
semiclasscial regime �10�. Nevertheless we find surprisingly
clear signatures of regular versus chaotic dynamics in the
long-term evolutions. Regular and chaotic structures of the
mixed classical phase space are also clearly evident in the
Husimi phase-space distributions �21� of the Floquet eigen-
states in the quantum regime.

In addition to unitary evolution, we also consider the
more realistic case of nonunitary dynamics when the kicked
top system is coupled to its environment. Our simulations of
the entanglement dynamics include the effect of decoherence
through a master equation description that accurately simu-
lates photon scattering in our cold atom system. Analysis of
the negativity, a measure of entanglement for mixed states,
shows that, although decoherence due to coupling with the
environment acts to reduce the overall 1 :k entanglement,
striking differences in the entanglement dynamics in regular
versus chaotic regimes can persist for times longer than the
decoherence time. Furthermore, the rate of decoherence itself
is slower in a regular regime than in a chaotic regime. Effects
of chaos on the decoherence rate were previously studied in
�14,15,22–24� using general models of decoherence in a
semiclassical regime. Here we use a realistic and accurate
model to verify qualitatively that classical chaos indeed af-
fects the decoherence rate in a physical system, even in a
deeply quantum regime. Our proposed cold atom implemen-
tation would be the first to allow studies of decoherence and
entanglement dynamics in a chaotic system.

The paper is organized as follows: In Sec. II we describe
the basic features of the standard quantum kicked top and the
corresponding classical system, which can exhibit chaos for

certain dynamical parameters. Section III discusses the effi-
cient measurement of 1 :k entanglement dynamics and the
possibility of experimental studies of entanglement with cold
atoms. In Sec. IV we present an analysis of signatures of
chaos in the entanglement dynamics of the kicked top for a
regime accessible in the cold atom system. We build on our
previous analysis of the kicked top �10� and identify regular
and chaotic eigenstates whose distributions are concentrated
on the classical phase-space structures in Sec. V. The rela-
tionship between decoherence, entanglement, and chaos is
analyzed in Sec. VI. We present a summary and our conclu-
sions in Sec. VII.

II. QUANTUM KICKED TOP AND ITS CLASSICAL LIMIT

The Hamiltonian for a quantum kicked top is given by
�16,17�

H =
�

2j�
Jx

2 + pJy �
n=−�

�

��t − n�� . �1�

Here, the operators Jx, Jy, and Jz are angular momentum
operators obeying the commutation relation �Ji ,Jj�=i��ijkJk.
The Hamiltonian describes a series of kicks given by the
linear Jy term interspersed with torsions due to the nonlinear
Jx

2 term. The time between kicks is �, the angle of turn per
kick is given by p, and the strength of the twist is determined
by �. The magnitude J2= j�j+1��2 is a constant of the mo-
tion.

The classical map from kick to kick can be obtained from
the Heisenberg evolution equations for the expectation val-
ues of the angular momentum operators,

�Ji�n+1 = �U†JiU�n. �2�

U is the Floquet operator describing unitary evolution from
kick to kick,

U = exp�− i�Jx
2/2j�exp�− ipJy� , �3�

where the energy is henceforth rescaled such that �=1. The
equations describing the evolution of the mean Jx, Jy, and Jz
involve functions of second moments of the angular momen-
tum operators, whose evolution in turn depends on third mo-
ments in an infinite hierarchy of equations. In order to obtain
the classical mapping, we factorize all second and higher
moments into products of the mean values �first moments� of
the angular momentum operators. This corresponds to local-
ization of the state to a point in the classical limit and breaks
the infinite hierarchy of equations at the level of first mo-
ments. Then, by defining the normalized variables X= �Jx� / j,
Y = �Jy� / j, and Z= �Jz� / j, we can write down the classical
mapping

Xn+1 = Xn cos�p� + Zn sin�p� ,

Yn+1 = Yn cos��X̃n� − Z̃n sin��X̃n� ,

Zn+1 = Z̃n cos��X̃n� + Yn sin��X̃n� ,

Z̃n = Zn cos�p� − Xn sin�p� ,
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X̃n = Xn cos�p� + Zn sin�p� . �4�

X̃n and Z̃n are the angular momentum variables subsequent to
the kick but before the action of the twist.

The parameter � is the chaoticity parameter in the classi-
cal kicked top. For p=� /2, Fig. 1 shows how � affects the
kick-to-kick stroboscopic dynamics of the classical variables
�=cos−1 Z, 	=tan−1�Y /X�. When �=1, the stroboscopic
phase space is dominated by islands of regular �periodic�
motion �Fig. 1�a��. As � is increased, the phase space be-
comes mixed with regular islands embedded in a sea of cha-
otic trajectories �Fig 1�b��. For even larger values of �, the
system eventually becomes globally chaotic.

III. MEASUREMENT OF ENTANGLEMENT
IN THE KICKED TOP

A. 1:k entanglement measure

We now focus on the dynamical evolution of entangle-
ment in the quantum kicked top. The total spin j can be
considered as a system of N=2j qubits with

J
 = �
i=1

N �
i

2
, 
 = x,y,z , �5�

where �
i
are the Pauli operators for the ith qubit. For initial

states that are symmetric under permutations of the identical
qubits, the kicked top operator acts collectively on all N qu-
bits, preserving the symmetry of the N-qubit state. This al-
lows us to write the spin expectation values for any single
qubit as

�s
� =
��
�

2
=

�J
�
2j

. �6�

For an overall pure state, the entropy of the reduced state
�̃, of a single qubit is a measure of 1 :k entanglement be-
tween a single qubit and the remaining k=N−1 qubits. For
convenience we study the linear entropy, S=1−Tr��̃2�. S
ranges from 0 for separable states to 1 /2 for maximally en-
tangled states. Since �̃ is a 22 density operator, it can in
general be expressed in terms of the Pauli matrices and the
identity matrix as �18�

�̃ =
1

2
+ �s� · � , �7�

where �s� is the mean spin vector of the qubit. Substituting
the expression for �s� from Eq. �6� into Eq. �7�, �̃ can be
expressed in terms of the collective angular momentum op-
erators as

�̃ =
1

2
+

1

2j
�J� · � . �8�

The linear entropy S=1−Tr��̃2� is then easily computed to
be

S =
1

2
�1 −

1

j2 ��Jx�2 + �Jy�2 + �Jz�2�	 . �9�

Measurement of the expectation values of the angular mo-
menta, �J
�, thus provides us with enough information to
calculate S, which is a measure of the 1:k entanglement,
without having to perform complete state tomography to re-
construct the entire multiqubit density operator. We also note
that the function S is identical to the generalized entangle-
ment with respect to the angular momentum observables—an
entanglement measure that is independent of subsystem di-
vision �25�. Furthermore, the linear entropy function is di-
rectly related to the “extent” or average spread of the state on
the sphere. For a state that is highly localized on the sphere,
the sum of the mean values of the angular momentum opera-
tors with be close to j so the entropy S will be close to 0. On
the other hand, for a highly delocalized state, the mean val-
ues of the angular momentum operators in Eq. �9� ap-
proaches 0 and the value of S approaches its maximum of
1 /2.

B. Experiments with cold atoms

An attractive physical system in which to realize a quan-
tum kicked top is the total hyperfine �electron+nuclear� spin
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FIG. 1. Stroboscopic phase-space maps of the classical kicked
top at different values of � for kick strength p=� /2. The spherical
coordinates �� ,	� are plotted �units of radians� after each kick for
144 initial conditions, each evolved for 150 kicks. �a� For smaller �,
the phase space is dominated by regular orbits. �b� At larger �,
regular orbits are embedded in a sea of chaotic trajectories.
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�18� of the electronic ground state of an individual atom. In
particular, we propose using samples of laser cooled alkali-
metal atoms to perform experiments on ensembles of identi-
cal kicked tops. The atomic spins can be initialized by opti-
cal pumping, and manipulated in a controlled manner by
Larmor precession in applied magnetic fields, and electric
dipole interaction with an applied laser field. Furthermore,
one can perform polarization spectroscopy on the driving
field to probe the spins in real time without perturbing the
dynamics �19�. These tools have already been used to dem-
onstrate nonlinear spin dynamics �20�, quantum state recon-
struction �26�, and quantum state control �27� with cesium
atomic spins. In the following, we briefly describe how to
realize the kicked top with this system.

In the low saturation, large detuning limit, the electric
dipole interaction between a single atom and a monochro-
matic laser field is described by a light shift

U = −
1

4
E* · �̂ · E , �10�

where E=Re�Ee−i�t� is the electric field, and where the
atomic polarizability �̂ is a rank-two tensor operator that can
be decomposed into irreducible components of rank 0, 1, and
2 �28,29�. Here, we consider alkali-metal atoms restricted to
a hyperfine ground state of given angular momentum F,
where F=I+S and F2=F�F+1��2 �18�. Here I is the nuclear
spin and S is the electron spin. Specifically, for cesium which
has a nuclear spin of I=7 /2 and electron spin of s=1 /2, F
can be either 4 or 3. Here we focus on the F=4 ground state
hyperfine manifold. The light shift U is then an operator
acting in a �2F+1�-dimensional manifold, separable into
three contributions from the irreducible components of �̂
�28,29�.

The rank-0 contribution is a scalar interaction which does
not couple to the spin degrees of freedom and therefore can
be ignored. The rank-1 contribution is an effective Zeeman
interaction of the form Beff ·F, where Beff is proportional to
the ellipticity of the laser field polarization �28�. For a lin-
early polarized driving field, this term disappears, leaving
only the rank-2 contribution. Choosing linear polarization in
the x-direction, the overall light shift is then quadratic in a
component of the hyperfine spin as required for the kicked
top �26,27,29�,

U =
��s

�
Fx

2. �11�

Here, �s is the single-atom photon scattering rate, which de-
pends on the laser intensity I, detuning �, transition line-
width �, and saturation intensity I0 �30� as �s
= ��3 /8�2��I / I0� �28,29�. The parameter � is a measure of
the relative time scales for unitary evolution and decoher-
ence, and depends on the atomic species and the frequency
of the driving field. It takes on a maximum value of 8.2 for
cesium atoms driven at a frequency in between the two hy-
perfine components of the D1 line at 894 nm �26�. Compar-
ing Eqs. �1� and �11�, we see that the strength of the chao-
ticity parameter is related to the system parameters by

� =
2��s

�
F� . �12�

Thus larger values of � are accompanied by higher rates of
decoherence through photon scattering, and this limits the
time over which one can observe unitary evolution of the
system.

The kicking term in the Hamiltonian of Eq. �1� can be
implemented by a train of magnetic field pulses separated by
a time �. This results in a Zeeman interaction of the form
g�BB ·F�n��t−n��, where g is the g factor, �B is the Bohr
magneton, and B is the strength of the magnetic field. The
finite bandwidth limitations of magnetic coils and drivers
prevent the application of true � kicks, but it is not difficult
in practice to keep the kick duration T much shorter than the
time � between kicks so that the �-kick approximation re-
mains valid. The angle of the turn per kick depends on the
Larmor frequency �L of the applied magnetic field,

p = �LT . �13�

Hence, by adjusting the laser intensity, detuning, Larmor fre-
quency, kick spacing, and duration, one can explore a whole
range of kicked top parameters � and p.

To observe quantum dynamics in different regions of the
classical phase space, we start with initial spin coherent
states �31�, which are rotations of the state 
j ,m= j� having
maximum projection along the z axis,


�,	� = ei��Jx sin 	−Jy cos 	�
j,m = j� . �14�

The expectation value of the spin in this state is given by
�J�= �j sin � cos 	 , j sin � sin 	 , j cos ��. In the qubit de-
scription, these states are separable with zero entanglement
between qubits. In our atomic system, the total angular mo-
mentum F is the sum of a large nuclear spin �I=7 /2 for
cesium� and a valence electron spin-1 /2 system �qubit�
whose reduced state can be described as in Eq. �7�. Starting
with initial spin coherent states and restricting ourselves to
the manifold of maximum F �F=4 for cesium�, the quantity
S in Eq. �9� is then a measure of the entanglement between
electron and nuclear spin, which can be experimentally mea-
sured by monitoring the mean collective angular momentum
�F� through, e.g., Faraday spectroscopy �19�. Alternatively
one can perform complete quantum state reconstruction of
the overall electron+nuclear spin state �26�. This opens up
the possibility of computing other entanglement measures
such as negativity, and of monitoring decoherence by calcu-
lating the overall state purity.

IV. DYNAMICAL ENTANGLEMENT AND CHAOS

We analyze here the 1:k entanglement dynamics of the
kicked top described by the Hamiltonian in Eq. �1�. We pick
the magnitude of the angular momentum j to be 4 to corre-
spond to the F=4 hyperfine manifold in the cesium ground
state. This puts the system far from the semiclassical regime
of large j �j�100� that has been studied in previous work on
signatures of chaos �9,10�. Even in this deeply quantum re-
gime with j=4, we can clearly identify the effect of chaos in
the entanglement dynamics.
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For �=3, p=� /2, we pick an initial spin coherent state
centered on a regular island of Fig. 1�b� with �=2.25, 	
=2.5. The resulting evolution of the entanglement measure S
shows quasiperiodic behavior �Fig. 2�a�� with collapses and
revivals in the entanglement. In contrast, for an initial state
centered in the chaotic sea of Fig. 1�b� with �=2.25, 	
=1.1, the quasiperiodic behavior disappears �Fig. 2�b�� and
the evolution is irregular. For this same initial state with �
=2.25, 	=1.1, if we change � to 1, the classical dynamics
becomes regular again �Fig. 1�a��, and correspondingly, qua-
siperiodic motion is recovered in the entanglement dynamics
in Fig. 2�c�. For both the regular and chaotic dynamics, en-
tanglement at first increases as the initially localized state
starts spreading over the phase space. However, for the states
initialized in regular regimes, the dynamics causes the state
to relocalize periodically, causing a reduction in entangle-
ment. This periodicity is more clearly illustrated in the Fou-
rier transform of the entanglement dynamics as shown in
Fig. 3. The frequency spectrum for initial states in a regular
regime have a few peaks whereas the spectrum for the initial
state in the chaotic regime is spread over a wide range of
incommensurate frequencies. In the regular regime the fre-
quency spectrum also has peaks close to zero frequency,
which leads to long term periodic evolution. Although Fig.
3�c� shows more peaks than Fig. 3�a�, the peaks are quite
evenly spaced leading to more periodic, regular evolution
and less dephasing. We explore this periodicity in more de-
tail in the following section.

We also compute a different measure of entanglement—
namely, the negativity defined as �32�

N =
��T� − 1

2
, �15�

where �T is the partial transpose of the overall state, �Tm�n�

=�n�m�. Here � is expressed in a product basis 
m� � 
��,
where 
m� is a basis for the single qubit �electron spin� sub-
system and 
�� is a basis for the remaining qubits �nuclear
spin�. The trace norm is defined to be

��T� = Tr���T
†�T� . �16�

Negativity is an entanglement monotone and has been shown
to be a valid entanglement measure �33�. One problem with
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FIG. 2. �Color online� Evolution of the linear entropy S ��a�–�c��
and the negativity N ��d�–�f��, for initial spin coherent states 
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centered in regular versus chaotic regimes of the classical phase
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negativity is that it cannot distinguish between separable �un-
entangled� states and bound or PPT entangled states �34� that
have a positive partial transpose �35� since in both cases the
negativity is zero. However in our case, the kicked top
Hamiltonian does not generate such PPT entangled states, so
we can use negativity as an unambiguous entanglement mea-
sure to compare to the linear entropy. Whereas entropy is a
measure of entanglement only for pure states, negativity can
be used as an entanglement measure for mixed states. We can
thus use this measure later in Sec. V to understand the en-
tanglement dynamics when we include photon scattering in
our model and the initial pure state becomes mixed due to
decoherence. The evolution of the negativity for the three
initial states considered in Figs. 2�a�–2�c� is shown in Figs.
2�d�–2�f�. The qualitative behavior exactly matches the evo-
lution of the linear entropy. We can identify collapses and
revivals in the dynamics for initial states in a regular regime
and irregular evolution for states initially in the chaotic sea.
The Fourier transform of the negativity is similar to that
shown in Fig. 3, so it is not explicitly shown again.

The three initial states analyzed above are representative
of the general behavior of entanglement in regular versus
chaotic regions. The entanglement dynamics changes more
or less smoothly from regular quasiperiodic evolution to ir-
regular evolution as we scan through initial spin coherent
states from regular to chaotic regions. To illustrate this, Fig.
4�a� shows the average entanglement over 600 kicks as a
function of initial conditions �� ,	� scanned along the line
�=2.25. The quasiperiodic behavior for initial states in the
regular islands leads to lower average entanglement as com-
pared to initial states in the chaotic sea. The initial transient
dynamics does not significantly affect the average value. In
Fig. 4�a�, the regular islands can be clearly identified by the
dips in the average entanglement. Conversely, in order to
confirm that the entanglement behavior is connected to the
level of chaoticity of the classical map, we scan through the
chaoticity parameter � for a fixed initial condition �=2.25,
	=1.1. The time average entanglement as a function of � is
shown in Fig. 4�b�. As the chaoticity parameter is increased,
the average entanglement increases. The dips in average en-
tanglement reflect the occasional appearance of periodic or-
bits as fixed points in the classical phase-space bifurcate in
the approach to global chaos.

To further confirm the correlation between the time aver-
aged entanglement and classical chaos, we plot the largest
classical Lyapunov exponent �36,37� in Fig. 5 as a function
of initial conditions �Fig. 5�a�� and � �Fig. 5�b��. The
Lyapunov exponent characterizes the level of classical chaos
by quantifying the rate of exponential divergence of initially
neighboring trajectories in the classical phase space. It is
zero in regular regimes and increases with the degree of
chaoticity of the system. A comparison of Fig. 4 to Fig. 5
shows the clear correlation between the average entangle-
ment and the Lyapunov exponent even though we are far
from the semiclassical regime. The dips in Figs. 4�a� and
4�b� correspond to the dips in Figs. 5�a� and 5�b�. The aver-
age entanglement increases with � like the Lyapunov expo-
nent but the maximum entanglement is limited to 0.5. There
are also some other differences. The Lyapunov exponent is
zero for initial conditions starting in the regular islands or

when � is smaller than 2.4. The initial quantum on the other
hand, is not a point in phase space, but has some spread in
phase space. The corresponding average entanglement is
smaller but not zero in regular regions but varies more
smoothly because of the spread of the state in phase space. If
the value of j is increased so that we move into a more
semiclassical regime, the correspondence becomes better and
the dips in entanglement in the regular islands become
deeper and closer to zero. This behavior is examined more
closely in the next section.

V. ANALYSIS OF FLOQUET EIGENSTATES

In previous work �9�, we had identified similar signatures
of chaos in the 2:k entanglement dynamics of two qubits
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FIG. 4. �Color online� Time averaged entanglement measured
by both entropy �stars� and negativity �pluses� reflects regular and
chaotic classical structures as �a� the location of the initial spin
coherent state is varied along the line �=2.25, −��	�� for con-
stant �=3, p=� /2 and �b� � is varied keeping the initial state
constant at 
�=2.25,	=1.1�. The average is taken over 600 kicks.
� ,	 are in units of radians. For further details, see the text.
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with the remaining qubits for a collection of N�50 qubits.
Here, we have shown that these features are generic and can
also be observed in the 1:k entanglement between a single
qubit and the rest. Furthermore, these signatures are surpris-
ingly persistent even for the case j=4 corresponding to only
eight qubits, which is far from the semiclassical regime. Ref-
erence �10� explained these universal signatures of chaos by
showing that in a semiclassical regime, the eigenstates 
un�,
of the kick-to-kick Floquet evolution operator �Eq. �3�� can
be classified as “regular” or “chaotic.” An initial state cen-
tered in a regular island has support on a few almost degen-
erate regular eigenstates that give rise to quasiperiodic mo-
tion involving a few regularly spaced eigenfrequencies,
whereas a state initially localized in a chaotic sea can be
decomposed into a number of chaotic eigenstates with a
broad spectrum of incommensurate frequencies contributing
to the dynamics.

Here, we test the above argument in the quantum regime.
Figure 6 shows the eigenstate decomposition f = 
�un 
� ,	�
2
of the three initial states whose dynamics are shown in Fig.
2. Each eigenstate is labeled by the corresponding eigen-
phase �n,

U
un� = ei�n
un� , �17�

where U is the Floquet evolution operator �Eq. �3��. The
regular initial state of Figs. 2�a� and 2�d� has support on a
few regular almost degenerate eigenstates �Fig. 6�a��, while
the chaotic initial state of Figs. 2�b� and 2�e� has support on
eigenstates with a broader spectrum of irregularly spaced fre-

φ

λ

(a)

κ

(b)

-2 0 2

0

0.1

0.2

0.3

0.4

0 2 4 6
0

0.5

1

λ

FIG. 5. Largest classical Lyapunov exponent, � as �a� the initial
condition is varied along the line �=2.25, −��	�� for constant
�=3, p=� /2 and �b� � is varied keeping the initial condition con-
stant at �=2.25, 	=1.1. � ,	 are in units of radians.
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FIG. 6. �Color online� Overlap f = 
�un 
� ,	�
2 of each of the
three initial spin coherent states 
� ,	� in Fig. 2 with Floquet eigen-
states 
un� corresponding to eigenfrequencies �n. Initial states in a
regular region �a�,�c� have support on a few regularly spaced or
degenerate eigenstates, while the state in the chaotic sea �b�, has
support on a larger number of chaotic eigenstates with irregularly
spaced eigenfrequencies. � ,	 are in units of radians.
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quencies �Fig. 6�b��. For the regular motion, the finite num-
ber of frequencies present in the frequency spectrum of S�t�
can be identified as sums of differences between eigenfre-
quencies of the regular eigenstates on which the initial state
has support �10�. In the chaotic case, the large number of
distinct eigenfrequency-difference sums give rise to a
broader power spectrum. The regular state in Fig. 6�c� also
shows support mostly on a single eigenstate and some sup-
port on almost degenerate eigenstate pairs. Although the
spectrum looks similar to the chaotic state of Fig. 6�b�, the
larger number and irregular spread of eigenfrequencies in the
chaotic state is sufficient to make the evolution much more
irregular than the regular case. Upon closer examination, we
find that unlike the chaotic case, the eigenfrequency spacing
of the dominant states in Fig. 6�c� is quite regular. This regu-
lar spacing and the larger support on a single eigenstate leads
to regular entanglement dynamics, with periodic revivals or
“rephasing” of the evolutions of the different component
eigenfrequencies, as seen in Fig. 2. Furthermore, support on
the almost degenerate eigenstate pairs lead to long term pe-
riodic behavior, which is missing in the chaotic case. The
irregular oscillations on a fast time scale are due to the small
but nonzero support on the remaining eigenstates.

Due to the small value of j of 4, there are only a small
total number of regular and chaotic eigenstates, so the cha-
otic power spectrum will not be completely flat and the dy-
namics will show some quasiperiodic behavior. Furthermore,
due to the mixed nature of the phase space, some eigenstates
have overlap on regular as well as chaotic regions and can
partially contribute to initial states in both regular and cha-
otic regions. Thus the differences between regular and cha-
otic regimes are not as clearly delineated in this deeply quan-
tum regime, compared to a semiclassical regime.
Nevertheless, the regular and chaotic regions of the classical
phase space can be identified by the support of the initial
state on the Floquet eigenstates. To verify this, in Fig. 7 we
plot the quantity

s = �
n


�un
�,	�
 �18�

as a function of initial conditions �� ,	� along the line �
=2.25, for �=3, p=� /2. This quantity measures the number
of eigenstates on which the initial state has support. s is close
to the maximum value of 3 in chaotic regions where the
initial state is a superposition of a large number of eigen-
states. s is a minimum of 1 if the initial state is supported
only on a single eigenstate. Therefore, when the initial state
is in a regular regime with support on only a few eigenstates,
s is closer to its minimum value. Thus s gives us a quantita-
tive measure which identifies chaotic versus regular dynam-
ics. As can be seen in Fig. 7, the dips in s correspond to the
regular regions in the mixed classical phase space and corre-
late perfectly with the time averaged entanglement, as well
as the classical Lyapunov exponent in Fig. 5�a�.

To further confirm the correspondence between the clas-
sical phase space and the quantum eigenstates, Fig. 8 shows
the Husimi quasiprobability distribution of the eigenstates
with largest overlap with each of the three initial states con-

sidered in Fig. 2. The Husimi distributions show an overlap
of a state 
un� with spin coherent states �21�,

P��,	� =
2j + 1

4�

��,	
un�
2. �19�

The distributions clearly show that the probability is concen-
trated on the classical phase-space structures shown in Fig. 1.
For regular eigenstates they are concentrated along periodic
orbits whereas for chaotic eigenstates they are delocalized in
the chaotic sea. Thus, although quantum chaos typically
deals with semiclassical techniques to explore quantum-
classical correspondence, our theoretical analysis provides
evidence that very clear signatures of classical chaos can be
present in regimes far from the classical or even semiclassi-
cal regimes.

A second signature of classical chaos predicted by the
semiclassical analysis is that the initial increase in entangle-
ment is faster for the state starting in the chaotic sea than for
those starting in regular regions �10�. In the chaotic regime
the initial rate of increase was predicted to be exponential
due to the contribution of a large number of incommensurate
eigenfrequencies to the dynamics. In the quantum system
considered here, due to the small size of the Hilbert space,
there are not enough eigenfrequencies to give rise to an ini-
tial exponential increase in entanglement. Furthermore, the
initial spin coherent states are not well localized in the phase
space and therefore tend to have support on both regular and
chaotic regions. This in turn tends to wash out differences in
the initial rate of entanglement generation. In fact, we find no
significant difference in the initial increase in entanglement
for states in regular versus chaotic regions. Our studies thus
not only serve to identify the correspondence between quan-
tum and classical descriptions, but also highlight the differ-
ences inherent in quantum and classical systems.
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FIG. 7. �Color online� Support on the Floquet eigenstates, 
un�,
s=�n
�un 
� ,	�
. The initial spin coherent state 
� ,	� is varied
along the line �=2.25, −��	�� with fixed �=3, p=� /2. s is
normalized with respect to its maximum value of s0=3, correspond-
ing to the case of equal support over all eigenstates. s /s0 has a
minimum of 1 /3 when the state has support on a single eigenstate.
The dips correspond therefore to the location of the regular islands
in the classical phase space of Fig. 1, as the initial state has support
only on a few regular eigenstates. � ,	 are in units of radians.
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VI. DYNAMICAL ENTANGLEMENT AND DECOHERENCE

In order to accurately model any physical system such as,
e.g., cesium atomic spins, we must include the effects of

decoherence due to interaction with the environment. We
perform simulations for the specific case of the cold atom
system including photon scattering which results in nonuni-
tary evolution. We model the evolution of the density opera-
tor � of the system using a master equation of the form

d�

dt
=

i

�
�H,�� + �

q
�Dq�Dq

† −
1

2
Dq

†Dq,��	 . �20�

The jump operators Dq=�q ·dge describe spontaneous emis-
sion from the excited states �38�. The excited states are adia-
batically eliminated by assuming that the ground state popu-
lations change slowly compared to the excited states and the
coherences. The excited state populations are thus effectively
slaved to the ground state populations to give a net evolution
only in terms of the ground state manifold F=4. Further-
more, any population which is pumped into the F=3 ground
state is treated as a loss and ignored in the subsequent dy-
namics. This is possible if atoms in the F=3 manifold are not
reexcited and therefore do not participate further in the ob-
served dynamics. This model has provided accurate simula-
tions of the physical system in recent experiments
�20,26,27�.

A. Effect of decoherence on entanglement

Figure 9 shows the simulated evolution �Eq. �20�� of the
entropy S�t� including decoherence for the three initial states
analyzed in Fig. 2. Comparing the unitary evolution of Figs.
2�a�–2�c� to the nonunitary evolution due to decoherence in
Figs. 9�a�–9�c�, we see that the qualitative features are the
same. The initial states in the regular regimes give rise to
quasiperiodic motion, which is missing in the chaotic re-
gime. Thus the signatures of chaos discussed in the previous
section are also evident in the open system dynamics. How-
ever, although the signatures of chaos are preserved, there is
an overall gradual increase in the linear entropy in the open
system dynamics. Eventually all initial states will lead to
maximum linear entropy. This is because the atoms are get-
ting entangled with the environment via photon scattering.
Thus the linear entropy no longer quantifies the 1:k en-
tanglement of a single qubit �electron� with the rest
�nucleus�. Instead it quantifies the total entanglement of the
electron with both the system and the environment. As the
system becomes more entangled with the environment, there
is an overall increase in entropy towards its maximum value
of 0.5. The reason that the signatures of chaos seen in Fig. 2
remain robust to the effect of decoherence is because the
photon scattering acts collectively on all the qubits and hence
does not completely destroy the entanglement dynamics be-
tween the identical qubits interacting symmetrically via the
kicked top Hamiltonian. Thus all the qubits get more en-
tangled with the environment leading to an overall increase
in the single qubit linear entropy, but the signatures of chaos
arising from the internal dynamics within the system do not
get completely destroyed until the system is maximally en-
tangled with the environment.

In order to verify the collective effect of decoherence on
the system, we compute the negativity as given by Eq. �15�.
Unlike the entropy S, the negativity N does give us a valid
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FIG. 8. �Color online� Husimi distribution of the Floquet eigen-
state having the largest overlap with each of the three initial states
�a�–�c� considered in Fig. 2. Solid lines are contours of equiprob-
ability distribution, and darker regions indicate larger probability. A
comparison with Fig. 1 clearly shows concentration of the distribu-
tions along the classical phase-space structures. � ,	 are plotted in
units of radians.
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measure of 1 :k entanglement for an overall mixed state re-
sulting from tracing out the environment. Figures 9�d�–9�f�
show the evolution of the negativity for the initial states
considered in Fig. 2. We see that there is an overall decrease
in the negativity but the quasiperiodic behavior in the regular
regimes and the irregular dynamics in the chaotic regime
exactly match the evolution of the entropy S in Figs.
9�a�–9�c�. This confirms that the total spin state collectively
gets more entangled with the environment, and accordingly
the total 1 :k entanglement within the system decreases.
However, because decoherence acts collectively on the total
spin system, the signatures of chaos caused by the interac-
tions within the system are not completely destroyed and
persist well beyond the scattering time. As described in Sec.
III B, larger values of � come at the cost of a higher photon
scattering rate and thus a faster overall decoherence rate as
seen in Fig. 9.

Although negativity has the advantage that it is a valid
measure of entanglement for mixed states, it presents a dis-
advantage for experiments when compared to the linear en-
tropy. This is because, in order to study negativity dynamics
in an experiment, the total �nuclear+electron� state must be
tomographically reconstructed. This is experimentally more
challenging than measuring the linear entropy via measure-
ments of �F
� �Eq. �9��. Hence, in actual experiments, it may

be more convenient only to measure the linear entropy S.
Our comparison of the negativity and the linear entropy �Fig.
9� then clarifies that the decoherence only causes an overall
decrease in the entanglement between electron and nuclear
spin. Thus the linear entropy dynamics can be used to iden-
tify signatures of chaos in the entanglement between electron
and nuclear spin even in the presence of decoherence. Fur-
thermore, since the decoherence only causes an overall de-
crease in entanglement in both the regular and chaotic re-
gimes, the time averaged entanglement will still be lower in
the regular regions than in the chaotic regions as seen in the
unitary evolution of Fig. 4. Signatures of chaos in the time
averaged dynamics should thus be possible to observe in the
experiment.

B. Effect of chaos on decoherence rate

In addition to examining the entanglement within the spin
system, we can also analyze the entanglement of the total
spin state with the environment due to photon scattering. We
set the intensity, detuning, and Larmor frequency to obtain
�=3 and p=� /2. We then compare the decoherence rates of
a spin coherent state centered on the regular island at �
=2.25, 	=2.5 and a spin coherent state centered in the cha-
otic sea at �=2.25 and 	=1.1. Since the experimental pa-
rameters are the same for both cases, the scattering rate �s is
also the same. However, despite the scattering rate being
constant, we find that the decoherence rate is faster for the
state initiated in the chaotic sea relative to the state starting
on the regular island. In Fig. 10, we plot the purity of the
overall state as a function of time. The purity decay is a
measure of the decoherence and shows that the decoherence
rate is faster for a state in the chaotic sea than for a state on
a regular island. We have observed this increased rate of
decoherence for states in a chaotic sea for other values of �
and p as well, indicating that chaos generally acts to increase
the decoherence rate of the system.

The increase in the decoherence rate in the chaotic regime
can be understood by examining the Lindblad terms in the
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FIG. 9. �Color online� Evolution of the linear entropy S ��a�–�c��
and the negativity N ��d�–�f�� in the presence of decoherence �pho-
ton scattering� for initial spin coherent states 
� ,	� centered in
regular versus chaotic regimes of the classical phase space. For
comparison, the three initial states considered are picked to be the
same as those in Fig. 2. See the text for details.
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master equation of Eq. �20� more carefully. The populations
in the excited states which determine the spontaneous emis-
sion rate, depend on the ground state populations. Therefore
we look at the evolution of the ground state populations in
the regular versus chaotic regimes. Figure 11 shows the Hu-
simi distributions after 50 kicks for the two initial spin co-
herent states centered in the regular island and chaotic sea.
The initial state on a regular island remains close to a more
robust spin coherent state. The Lindblad jump operators for
this state lead to a net lower spontaneous emission rate. For
the initial state in the chaotic sea, the dynamics causes the
population distribution to quickly lose any symmetry and
diverge from a coherent state. The spontaneous emission for
such a state leads to a net larger decoherence rate.

Our results support the arguments originally formulated

by Zurek and Paz �14,15� showing that chaos can affect the
rate of decoherence. Their analysis showed that in the cha-
otic regime, the rate of decoherence is determined by the
classical Lypunov exponents. Since the original work, further
numerical and analytical studies have explored this idea to
develop a more detailed picture of the quantitative connec-
tions between chaos and the decoherence rate in different
regimes of coupling strength and chaoticity parameter
�22–24�. The relevance of our work is that we consider a
realistic and accurate decoherence model for an actual physi-
cal system very deeply in the quantum regime and verify the
predictions obtained from semiclassical theories and more
abstract decoherence models. In future work we plan to per-
form more detailed studies of the time scales for decoherence
in this system.

VII. CONCLUSION

In summary, we have presented an analysis of entangle-
ment and decoherence in the kicked top in a quantum regime
of relevance to proposed experiments with cold cesium at-
oms. We have shown that 1 :k entanglement can be easily
measured from the mean angular momentum vector, and sig-
natures of chaos are evident in the dynamics of entanglement
in this quantum regime. The regular versus chaotic behavior
can be understood by examining the decomposition of the
initial state into regular and chaotic eigenstates of the Flo-
quet operator. Our studies of dynamics in the deeply quan-
tum regime shed new light on quantum-classical correspon-
dence by showing that clear signatures of classical chaos can
be identified far away from the semiclassical regime. Our
results demonstrate truly quantum chaos in the sense that the
system operates in a deeply quantum regime and signatures
of chaos are observed in quantum properties such as en-
tanglement and decoherence.

Our simulations of the realistic system of cold atoms un-
dergoing decoherence due to photon scattering reveal that
decoherence reduces the 1:k entanglement but does not erase
the signatures of chaos. Furthermore, we have shown that
chaos can enhance the overall decoherence rate, or entangle-
ment of the system with the environment. This shows that
whereas chaos can be helpful for generating entanglement
within the system, it can have negative effects by rapidly
causing decoherence.

We have thus shown a means for performing the first
experimental studies of entanglement in a chaotic system,
identified signatures of chaos in entanglement in a quantum
regime that previous theoretical studies have not investi-
gated, and extended the previous theoretical analysis to this
quantum regime. Furthermore, we have demonstrated the
collective effect of decoherence on the entanglement, and
identified and explained signatures of chaos in the decoher-
ence rate using a realistic model of decoherence. The cold
atom experiments would be the first to realize the kicked top
and study entanglement in a chaotic system. They would be
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FIG. 11. �Color online� Husimi distributions after 50 kicks for
the initial states considered in Fig. 10, with �=3, p=� /2. Solid
lines are contours of equiprobability distribution, and darker regions
indicate larger probability. The initial spin coherent state centered
on a regular island �a� with 
�=2.25,	=2.5� remains closer to a
robust spin coherent state, whereas the initial spin coherent state
centered in the chaotic sea with 
�=2.25,	=1.1� spreads quickly,
leading to a delocalized state with net larger spontaneous emission
and hence larger decoherence. � ,	 are plotted in units of radians.
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a stepping stone towards developing a robust set of experi-
mental techniques for quantum control of multiqubit sys-
tems. An effort to implement the experiments decribed here
is currently under way.
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