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We study quantum control of the full hyperfine manifold in the ground-electronic state of alkali-metal atoms
based on applied radio frequency and microwave fields. Such interactions should allow essentially
decoherence-free dynamics and the application of techniques for robust control developed for NMR spectros-
copy. We establish the conditions under which the system is controllable in the sense that one can generate an
arbitrary unitary map on the system. We apply this to the case of 133Cs with its d=16 dimensional Hilbert space
of magnetic sublevels in the 6S1/2 state, and design control wave forms that generate an arbitrary target state
from an initial fiducial state. We develop a generalized Wigner function representation for this space consisting
of the direct sum of two irreducible representations of SU�2�, allowing us to visualize these states. The
performance of different control scenarios is evaluated based on the ability to generate a high-fidelity operation
in an allotted time with the available resources. We find good operating points commensurate with modest
laboratory requirements.

DOI: 10.1103/PhysRevA.78.023404 PACS number�s�: 32.80.Qk, 42.50.�p, 02.30.Yy

I. INTRODUCTION

The control of spins is the foundation of coherent spec-
troscopy at the heart of NMR, atomic clocks, and many pre-
cision metrology experiments �1�. More recently, spins have
been seen as ideal carriers of information, with developments
in spintronics for classical �2� and quantum �3� information
processing. Atomic spin systems have been of particular in-
terest given their excellent isolation from the environment
and the available techniques in the “quantum optics tool-
box.” Examples include ensembles of atomic spins as quan-
tum information processing elements �4–8�, ion-trap quan-
tum computers �9–11�, and neutral-atom optical lattices �12�.
The latter has attracted tremendous attention in recent years,
as controllable spin lattices are seen as a platform in which to
perform quantum simulations of condensed matter systems
�13� and studies of topological quantum field theory �14�.

While in many studies of atomic spin control one consid-
ers two-level spin qubits, real atoms have large spins with a
rich internal structure. The ability to fully control the Hilbert
space within the atoms for various applications is an impor-
tant addition to the toolbox. It allows for the possibility of
d-dimensional qudits as the fundamental information carriers
�15� and the embedding of logical qubits in a qudit, which
may be advantageous for control or protection from errors
�16�. Additionally, manipulating a nontrivial Hilbert space
allows us to explore interesting dynamics such as quantum
chaos �17,18�. Finally, in the same way that liquid state
NMR has provided an excellent platform for exploring quan-
tum control protocols �19–21�, atomic spin systems provide a
test bed with unique physical properties that allows for new
investigations into control and measurement techniques.

In this paper we study quantum control of electron and
nuclear spins of alkali-metal atoms, coupled by the hyperfine
interaction in the electronic ground state, using combinations
of static, ac radio-frequency, and ac microwave-frequency
magnetic fields. In previous studies, we implemented similar
control based on a combination of magnetic interactions and

a nonlinear ac Stark shift induced by a laser field �22,23�. In
that work, control was restricted to a single subspace of total
angular momentum of the coupled spin system, rather than
the whole Hilbert space. More fundamentally, the light-shift
interaction at the heart of the protocol came at the cost of
some decoherence by spontaneous emission. The maximum
ratio of nonlinear light shift to photon scattering is fixed by
the atomic structure, thereby limiting the ultimate utility of
that approach. In contrast, direct magnetic coupling to spins
in the ground state is essentially decoherence free, with
dephasing due solely to inhomogeneities and background
fields that can be mitigated, in principle, by robust control
techniques �20,24�. Radio-frequency and microwave control
thus has the potential for higher-fidelity operation on a larger
Hilbert space with speeds comparable to or faster than those
previously achieved. Such capabilities are similarly being
explored for use in ion trap quantum information processing
�25�.

Our ultimate goal is the implementation of general dy-
namical maps on the quantum system. In this paper we take
a first step—preparation of an arbitrary state in the Hilbert
space. In particular, we look at open-loop state preparation
through the application of control wave forms that take some
particular known fiducial state to a target final state. It was
shown in �26� that this type of problem is much easier than
the problem of generating arbitrary unitary evolutions due to
a mathematical property that promises local searches will
find global optima. We will discuss this in more detail in Sec.
III, but intuitively this problem requires specifying only one
row of a d�d unitary matrix. Creating one row requires as
many free parameters as it takes to identify a single state in
Hilbert space, 2d−2, as opposed to the d2−1 parameters that
are required to specify an arbitrary unitary matrix.

The remainder of this paper is organized as follows. In
Sec. II we establish the fundamental Hamiltonian that de-
scribes the dynamics of the spins and their interaction with
the applied control fields. In Sec. III, we discuss what it
means to be controllable in the Lie algebraic sense �27–29�
and determine which configurations of our fields satisfy
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these criteria. Finally, in Sec. IV we present an algorithm that
uses a gradient ascent method to generate control wave
forms for state preparations. We apply our protocol to the
example of 133Cs, with one valence electron �spin S=1 /2�
and a nuclear spin �I=7 /2�, a total Hilbert space of dimen-
sion d=16. We show data from simulations comparing how
different types of controls perform and tradeoffs that can be
expected in the laboratory. Along the way, we establish dif-
ferent visualization tools for coupled spin systems based on a
generalized Wigner function representation and give analytic
proofs for controllability of our system. These results are
discussed in the appendixes.

II. CONTROL HAMILTONIAN

In this work we seek to control the quantum state of a
multilevel atom. Though single atom addressing and mea-
surement are possible �30–32�, in practice we consider en-
sembles of uncorrelated particles. To the degree that the at-
oms are identically prepared and uniformly addressed, with
no interactions between them either from interatomic forces
or through measurement backaction, we can take the joint
state of the system as effectively N identical copies, ��N.
More general many-body control is not considered here. Re-
stricting then to a single atom, the relevant Hilbert space of
an alkali-metal atom in its electronic ground state is the ten-
sor product space of electronic spin S and nuclear spin I
subsystems, H=hS � hI. Given the single valence electron
S=1 /2, the Hilbert space is spanned by two irreducible sub-
spaces of total angular momentum F�= I�1 /2, such that
H=h+ � h−.

The Hamiltonian describing the atom and its interaction
with external magnetic fields takes the form

H = AI · S + 2�BB�t� · S , �1�

where �B is the Bohr magneton and we have neglected the
small nuclear magneton contribution. Here and throughout
we set �=1. We consider the application of three fields,
B�t�=B0ez+Brf�t�+B�w�t�. The static bias field B0 defines
the quantization axis and Zeeman splittings between the
magnetic sublevels. The terms Brf�t� and B�w�t� describe
magnetic fields oscillating at radio and microwave frequency,
respectively. The hyperfine coupling between spins provides
an effective nonlinearity that will allow full controllability of
the Hilbert space for appropriate choice of external fields.

In the linear Zeeman regime, �BB0�A, the static field
acts separately in the two irreducible subspaces, and accord-
ing to the Landé projection theorem the Hamiltonian is ap-
proximately

HB0
� �B�

f=�

gfB0 · F�f�. �2�

Here F���� P�FP� refers to the total angular momentum
operator projected onto the subspaces with quantum number
F�. Neglecting the nuclear magneton contribution, the g fac-
tors for the two manifolds have equal magnitude but opposite
sign, i.e., g+=−g−=1 /F+. The hyperfine coupling plus bias
magnetic field thus determine the static Hamiltonian,

H0 =
�EHF

2
�P+ − P−� + 	0�Fz

�+� − Fz
�−�� , �3�

where �EHF=AF+ is the hyperfine splitting and 	0
=�BB0 /F+ is the Zeeman splitting between neighboring
magnetic sublevels.

As our first control field, we consider rf magnetic fields
oscillating near the frequency of the Zeeman splitting, 
rf
�	0, realized by Helmholtz coils driven with the appropri-
ate current. We take two sets of coils that produce fields with
x and y polarization, independent amplitude and phase con-
trol, but equal carrier frequency, 
rf. Again, for moderate
current such that the amplitude of the field is in the linear
Zeeman regime, the rf Hamiltonian takes a form equivalent
to the interaction with the static field,

Hrf�t� = 	x�t�cos�
rft − �x�t���Fx
�+� − Fx

�−��

+ 	y�t�cos�
rft − �y�t���Fy
�+� − Fy

�−�� . �4�

The time dependent amplitudes �	x�t� ,	y�t�� and phases
��x�t� ,�y�t�� of the two sets of rf coils will be used to control
the system.

To better understand the effect of the rf field, consider a
resonant interaction, 
rf=	0. In the rotating frame, Hrf�t�
→Hrf� �t�=Urf

† Hrf�t�Urf, where Urf=exp�−i
rft�Fz
�+�−Fz

�−��	 is a
rotation of the two manifolds about the z axis in opposite
directions, Fx

���→Fx
��� cos�
rft��Fy

��� sin�
rft�,
Fy

���→Fy
��� cos�
rft��Fx

��� sin�
rft�. Performing this unitary
transformation and averaging over a cycle, the rf Hamil-
tonian in the rotating wave approximation is

Hrf� �t� =
	x�t�

2
cos��x�t���Fx

�+� − Fx
�−�� +

	x�t�
2

sin��x�t��

��Fy
�+� + Fy

�−�� +
	y�t�

2
cos��y�t���Fy

�+� − Fy
�−��

−
	y�t�

2
sin��y�t���Fx

�+� + Fx
�−�� . �5�

F = 3

mF = -3 -2 0 1-1 32

F = 4

-4 4

FIG. 1. �Color online� The ground state hyperfine manifold of
133Cs. Radio-frequency magnetic fields �rf, in red� lead to indepen-
dent rotations in the two manifolds. Microwaves ��w, in blue� are
the generators of rotation in a two-dimensional subspace between
states in the two manifolds, here the stretched state transition

4,4�→ 
3,3�.
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Radio-frequency control of the two spin manifolds differs
from the familiar spin resonance problem. In the latter, a
single magnetic field in either the x or y direction would be
sufficient to generate the entire SU�2� algebra for rotations.
With two irreducible manifolds there is an added freedom—
the two angular momenta F+ and F− can rotate in the same or
opposite directions. Amplitude and phase control of two rf
magnetic field polarizations allows us to perform arbitrary
and independent rotations on the two hyperfine manifolds.
With only a single direction of Brf we would be restricted to
either co-rotating or counter-rotating in the two subspaces.

The weak rf magnetic fields alone will not be sufficient to
fully control our atomic system; they do not couple the F+
and F+ manifolds, nor do they provide a nonlinear Hamil-
tonian within these subspaces. In order to make our system
fully controllable, we look to resonant microwaves. While
the fundamental Hamiltonian governing the microwaves is
exactly of the same form as the quasistatic magnetic fields,
the resonant behavior leads to very different dynamics than
the previous interactions. Depending on the polarization and
frequency, the microwave couples a Zeeman sublevel in F+
manifold with one in the F− manifold whose magnetic quan-
tum number differs by �m�0,1. For a sufficiently strong
bias B0 we can ignore any off-resonant excitation, and re-
strict the Hamiltonian to act only on a two-dimensional �2D�
subspace spanned by the states we are trying to couple. In
that case the microwave Hamiltonian has the form

H�w�t� = 	�w�t�cos�
�wt − ��w�t��x, �6�

where x is the Pauli sigma-x matrix for this pseudospin,
x= 
F+ ,m+��F− ,m−
+ 
F− ,m−��F+ ,m+
, and 	�w�t� is the
�time-dependent� Rabi frequency depending on the micro-
wave power and the transition matrix element. Again, the
amplitude and phase of the microwave fields are control pa-
rameters. In this subspace, the problem takes the form of the
standard two-level resonance problem. We must take care in
going to the rotating frame to account for the simultaneous
transformation we perform due to the rf fields. The complete
frame transformation is achieved by the unitary matrix

U = Urf exp− i
�t

2
�P+ − P−�� , �7�

where �=
�w− �m++m−�
rf. Under this transfromation, the
Hamiltonian in the rotating wave approximation for resonant
microwaves is

H�w� �t� =
	�w�t�

2
cos���w�t��x +

	�w�t�
2

sin���w�t��y ,

�8�

generating rotations of this pseudospin on the Bloch sphere.
Combining the static, rf, and microwave interactions the

final Hamiltonian in the rotating frame is

H��t� = H0� + Hrf� �t� + H�w� �t� . �9�

Allowing for a finite detuning of the oscillating fields from
resonance, the static Hamiltonian in the rotating frame be-
comes

H0� =
��w

2
�P+ − P−� + �rf�Fz

�+� − Fz
�−�� , �10�

where ��w=
�w−�EHF− �m+m��
rf is the effective detun-
ing of the microwaves from the two-level transition of inter-
est, 
F− ,m−�→ 
F+ ,m+�, and �rf=
rf−	0 is the rf detuning.
This, together with Eqs. �5� and �8�, defines the Hamiltonian
we employ for control, and which we will analyze for use in
arbitrary state preparation.

III. CONTROLLABILITY

In order to perform state preparation on a system, we
must first determine the conditions under which the system is
controllable in principle. Is it possible to create an arbitrary
state using the Hamiltonian dynamics we have available, ne-
glecting technical constraints such as bandwidth and slew
rates that restrict the types of wave forms we use to drive our
atoms? To answer this, it is simpler to analyze the conditions
necessary to generate an arbitrary unitary evolution, a prob-
lem that has been studied in depth in the control theory lit-
erature, �27,28�, and more recently from a quantum informa-
tion perspective �29�.

Formally stated, we consider a quantum system in a Hil-
bert space of dimension d, governed by a Hamiltonian of the
form

H�t� = H0 + �
j

bj�t�Hj . �11�

The system is said to be “controllable” if for every possible
unitary map, U0�SU�d�, there exists a choice of controls
bj�t� and a finite time T such that the Hamiltonian evolution

given by the Schrödinger equation,U̇�t�=−iH�t�U�t�, maps
the identity operator to U0 at time T. A necessary and suffi-
cient condition for controllability is that the independent
terms in the Hamiltonian �H0 ,H1 , . . . ,Hn	 generate the Lie
algebra su�d�. Obviously, if we can perform any unitary evo-
lution, we can perform any state preparation.

To elucidate the connection between controllability and
the generators of the Lie algebra, we review the basic prin-
ciples here. A Lie algebra is a linear vector space with an
algebraic product defined by the commutator. We can see
that we can generate any linear combination of our initial set
of generators by looking at very short square pulses accord-
ing to the Trotter formula, where

e−iH1��e−iH2�� � e−i��H1+�H2��. �12�

Such short pulses are allowed since we assume access to an
arbitrary wave form. In addition to linear combinations it is
also possible to generate the commutators by

e−iH1�e−iH2�eiH1�eiH2� � e−�H1,H2��2
. �13�

The ability to generate, in principle, any linear combination
and any commutator means that one can simulate any ele-
ment of the the Lie algebra generated by our initial indepen-
dent Hamiltonians, �H0 ,H1 , . . . ,Hn	, and thus any unitary
matrix contained in the associated Lie group. If the Lie al-
gebra generated is su�d�, we call this system controllable.
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For the Hamiltonian system described in Sec. II, with ar-
bitrary control of the amplitude and phase of the two or-
thogonal sets of rf coils and a single microwave field, the
control algebra generated by the six operators
�Fx

�+� ,Fy
�+� ,Fx

�−� ,Fy
�−� ,x ,y	 is su�d� in its entirety. In this

case, it is possible to prove controllability analytically for an
arbitrary alkali-metal atom, with an arbitrary nuclear spin I.
The proof is fairly involved and is shown in detail in Appen-
dix A.

Though sufficient, the entire available set is not necessary
to achieve controllability. In practice, one can reduce the
number of generators in the control algebra and still imple-
ment an arbitrary unitary map. For an experiment, it is im-
portant to understand which components are really necessary
so that we can evaluate the tradeoffs between ease of imple-
mentation and controllability. In order to study the capability
of various reduced sets of controls we resort to numerics.
Being a linear vector space, determining whether a set of
operators generates the algebra su�d� only requires showing
that it is possible to generate a basis for su�d�. We do this by
tabulating a library of all the linearly independent operators
generated by the set of control operators.

We carried out this procedure for the specific example of
133Cs with nuclear spin I=7 /2 and study the capability of a
variety of control sets to generate the entire su�16� algebra
�see Fig. 1�. We considered eight different microwave con-
figurations: controlling or fixing the amplitude and the phase
of the fields, and whether or not we are detuned from reso-

nance. The two cases where both the amplitude and phase
are controlled and where the amplitude is fixed but the phase
is controlled can be shown to be equivalent. In the rf con-
figurations, we also allow for one or two orthogonal sets of
magnetic coils �rf polarization�. The last free parameter is the
choice of which microwave transition we excite. We assume
arbitrary frequency and polarization selectivity of the desired
transition for this purpose. The results are summarized in
Fig. 2. In each box we enumerate the set of microwave tran-
sitions that yield controllable dynamics. We find that our
system is controllable for a wide number of configurations,
though there are some specific cases in which it is not. For
example, out of all the choices for microwave transitions, the
clock transition, 
F+ ,0�→ 
F− ,0�, renders the system control-
lable in the least number of scenarios. This should not come
as much of a surprise since we are controlling the system
with rf magnetic fields and this transition is insensitive to
magnetic fields.

It is interesting to note that there exist configurations that
are controllable in which there is one time-dependent control
field and some fixed time-independent fields. This is the sim-
plest scenario one could expect to find, and allows for bang-
bang control, a well-studied protocol. In this paper, however,
we look at the control systems that utilize more parameters,
decreasing the time needed for state preparation.

IV. STATE PREPARATION

We seek to design Hamiltonian evolutions that take an
initial known quantum state to an arbitrary quantum state in

1 µw trans, 1 µw trans, 1 µw trans, 1 µw trans, 1 µw trans, 1 µw trans,
fixed ampl, controlled ampl, fixed ampl, fixed ampl, controlled ampl, fixed ampl,
fixed phase, fixed phase, controlled phase, fixed phase, fixed phase, controlled phase,

resonant resonant resonant detuned detuned detuned

1 rf polarization, fixed ampl,

fixed phase, resonant

1 rf polarization, controlled ampl,

fixed phase, resonant

1 rf polarization, fixed ampl,

controlled phase, resonant

1 rf polarization, fixed ampl,

fixed phase, detuned

1 rf polarization, controlled ampl,

fixed phase, detuned

1 rf polarization, fixed ampl,

controlled phase, detuned

2 rf polarizations, fixed ampl,

fixed phase, resonant

2 rf polarizations,controlled ampl,

fixed phase, resonant

2 rf polarizations, fixed ampl,

controlled phase, resonant

2 rf polarizations, fixed ampl,

fixed phase, detuned

2 rf polarizations, controlled ampl,

fixed phase, detuned

2 rf polarizations, fixed ampl,

controlled phase, detuned

FIG. 2. �Color online� Table exploring controllability of the system for a variety of configurations: one microwave field driven on
different two-level transitions, 
F=3,M�→ 
F=4,M��, amplitude and/or phase control, one or two sets of orthogonal rf coils �rf polariza-
tions�, and resonant vs detuned fields. The different configurations yield one of four different outcomes: �green circle� all microwave
transitions provide full controllability, �yellow square� all transitions but the clock transition 
3,0�→ 
4,0� provide full controllability,
�orange pentagon� only the transitions of the form 
3, �3�→ 
4, �4� and 
3, �3�→ 
4, �2� provide full controllability, and �red octagon�
no transitions yield controllable Hamiltonian dynamics. In this calculation we consider all valid microwave transitions that can be selected
with polarization and/or frequency.
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the Hilbert space. Historically, numerical searches for control
wave forms have performed much better than expected. The
fidelity of a state preparation is a functional of the control
wave form,

F�b�t�� = 
��target
U�b�t��
�0�
2

= 
��target
T�e−i�0
TH0+�jbj�t�Hjdt�
�0�
2, �14�

where T is the time ordering operator. Under ideal condi-
tions, assuming no decoherence and an arbitrarily amount of
time to perform the control, Rabitz et al. �26� proved that the
control landscape is surprisingly simple—every local opti-
mum is a global optimum. This implies that

�b�t�F�b0�t�� = 0 ⇔ F�b0�t�� = �0,1	 , �15�

completely independent of the initial and target states. There-
fore a local search of the space of control fields, starting from
any random initial guess, will find a global maximum of the
fidelity. For this problem, gradient searches perform about as
well as more computationally intensive searches like genetic
or simulated annealing algorithms.

In a real system the assumptions of the proof will not
hold. There will always be some decoherence and one does
not have infinite time to perform the control. In fact, we
would like to perform state preparation as fast as possible in
order to combat decoherence and various inhomogeneities
that lead to accumulated errors. Additionally, we need to
consider control fields that have a limited bandwidth and
slew rate constraints. For these realistic conditions, not every
gradient search from an arbitrary starting point yields a glo-
bal maxima. Nonetheless, we have found empirically that the
results of the theorem are approximately true with moderate
decoherence and after a sufficient time. We still find excel-
lent protocols after making only a small handful of searches,
and these can be further filtered to find control wave forms
that perform well under realistic operating conditions.

A. Optimization protocol

As we are dealing with the optimization of wave forms
that are functions of continuous time, the first step is to trans-
form the problem into a search for a finite number of values
at discrete times. The physical constraints of bandwidths and
slew rates of the controllers provide a natural scale. There is
a minimum interval during which a field can vary over a
maximum range. A discretized version of a control wave
form is thus specified as a vector of values within this range
at these fixed intervals. The continuous control wave forms
are then found by interpolation using cubic splines, consis-
tent with the bandwidth constraints, at least on a fine enough
grid for use in our numerical integration of the Schrödinger
equation.

We create optimal control wave forms by first fixing the
total time of the state preparation procedure. Due to our dis-
cretization technique, fixing the total time fixes the number
of optimization variables. Starting from a randomly chosen
initial vector of control wave form values b0, we perform a
gradient ascent search by taking small steps in the direction
of steepest ascent, i.e.,

bn+1 = bn + � � F�bn� . �16�

An optimal value corresponds to the maximum, where the
gradient approaches zero. We performed this search numeri-
cally on a MATLAB cluster by optimizing wave forms from a
handful of random seeds in parallel, and then chose the one
that gave the highest fidelity. In this work we do not consider
the robustness of the wave form to inhomogeneities and
noise. More complex objective functions can be optimized as
in �23� once the relevant experimental conditions are known.

We applied this protocol to the specific case of 133Cs, with
ground-state hyperfine splitting of �EHF=9.2 GHz. We take
a static bias field to produce a Zeeman splitting of 	0
=1.0 MHz, sufficient to give excellent resolution of the mag-
netic sublevels, but well within the linear Zeeman regime.
The rf field power is chosen so that on resonance the rotation
rate is characterized by 	rf=15 kHz. As a generic case, we
take one microwave field, resonant on one of the stretched
transitions 
F=3,M = �−3�→ 
F=4,M = �−4�, where the
microwave Rabi frequency is largest, and the system is con-
trollable in a wide variety of scenarios. The microwave
power is chosen to give a Rabi frequency 	�w=40 kHz. The
slew rates constrain the maximum rate of change of ampli-
tude and phase of the control fields. In the case of the rf-
magnetic field, a “slew time” of �rf=10 �s fixes the slew
rates on the amplitude to 1.5 kHz /�s and phase to 0.2� /�s.
In the case of microwaves, faster control is possible, with a
slew time of ��w=1.0 �s, or amplitude and phase slew rates
of 40 kHz /�s and 2.0� /�s, respectively.

Two examples of the end product of this optimization are
shown in Figs. 3 and 4 for target states 1

�2
�
4,4�+ 
3,−3�� and

1
�2


4,4�+ 1
2 �
3,3�+ 
3,−3��, respectively. The initial state for

these examples is the stretched state 
4, 4�, a state easily
reached by optical pumping. We optimized wave forms for
both the amplitude and phase for two rf polarizations in the x
and y directions as well as for the microwave field. The
fidelities of preparation in both cases are greater than 99%.
The state preparations shown here take 150 �s, an interval
that ensures that a moderate search will yield high-fidelity
wave forms. More intensive optimizations can yield faster
control wave forms.

Our gradient search algorithm leads to wave forms that
cause the system to undergo quite complex dynamics, as
evidenced by the intermediate states seen in the course of the
evolutions, Figs. 3 and 4. One may wonder whether there are
simpler choices, since given a fixed initial state, there are
many different wave forms that lead to same target state.
While our method does lead to wave forms that are hard to
intuitively understand, some recent studies �33� suggest that
the wave forms derived from gradient searches may be more
robust than those that come from more geometric algorithms.

B. Performance of optimization

In Sec. III we discussed the mathematical conditions nec-
essary for our Hamiltonian dynamics to be controllable.
These conditions, while useful for ruling out large classes of
Hamiltonians as unsuitable for our purposes, tell us nothing
about the relative performance of different control scenarios.
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Our figure of merit is the time after which we can be reason-
ably sure that our optimization will find a high fidelity wave
form for any target state. To determine this time for a given
control protocol, we run our optimization up to a given final
control time over a large collection of randomly chosen
states and determine the average fidelity. In this section we
examine these results and discuss some of the tradeoffs and
bottlenecks that might be encountered in the lab.

There are many parameters in this system that we can
manipulate, including the number of independently con-
trolled rf polarizations, the number of resonant microwave
frequencies, the types of controls �amplitude vs phase�, de-

tuning, slew rates, and the strengths of the different fields.
Based on some of our previous experiments we set as a base-
line one microwave frequency, two orthogonal rf polariza-
tions, rf power giving 	rf=15 kHz, a microwave Rabi fre-
quency of 	�w=40 kHz, a rf slew time of 10 �s, and a
microwave slew time of 1.0 �s. While we could indepen-
dently vary all these parameters, this would be an unwieldy
computation. Here we fix some of the parameters that are
unlikely to differ in the future experiments we are consider-
ing. In particular, we fix the rf slew time to be 10 �s and
consider control with two sets of rf coils. For simplicity we

TARGET

(1)(0) (2)

(4)(3)

(k
H

z)
(k

H
z)

Time (µs)

(1)(0) (2) (3) (4)

(k
H

z)

(k
H

z)

(k
H

z)

(k
H

z)

(1)(0) (2) (3) (4)

Time (µs)

(1)(0) (2) (3) (4)

Time (µs)

FIG. 3. �Color online� Sample evolutions that result from our state preparation algorithm. Starting in the spin coherent state 
4, 4�, we
simulate preparation of the state 1

�2
�
4,4�+ 
3,−3�� and obtain a fidelity 0.993. We control the amplitudes and phases of rf coils in both the

x and y directions, as well as the amplitude and phase of a resonant microwave that couples the states 
4,−4� and 
3,−3�. We show the
Cartesian components of the three control fields �	 cos � and 	 sin �� over the entire state preparation time of 150 �s. We show snapshots
of the evolved state at five different times, identified as times �0�–�4�. Two different representations of the state are shown: bar charts of the
absolute values of the density matrix elements, and a generalized spherical Wigner function. The spheres on the diagonal represent the
Wigner functions in the irreducible subspaces F� and the off-diagonal spheres represent the coherences between the manifolds. For details
see Appendix B.
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also consider all fields to be resonant, and the microwaves to
couple the stretched states.

Statistics were collected by running the state preparation
algorithm for ten different random states found by sampling
using the Harr measure on SU�16� �34�. In all cases the ini-
tial state was the 
4,4� state. For each combination of total
time, target state, and system configuration, we run the opti-
mization 20 times starting from different random seeds of the
vector that defines the control wave form, as discussed is
Sec. III. Out of this set of 20, we choose the highest fidelity
preparation. The fidelities from the ten random states are
averaged to produce the data points shown in Fig. 5. In prin-
ciple, more iterations would yield higher fidelity wave forms,
but it is useful to understand which types of high-fidelity
controls can be found after only modest searches.

In Fig. 5�a�, we study the effect of varying the character-
istics of the microwave field. We compare the performance
of one vs two resonant microwave frequencies on one or
both of the stretched transitions, 
3,3�→ 
4,4� and 
3,−3�

→ 
4,−4�. In addition, we examine the effect of removing
control of the microwave amplitude �a scenario that still al-
lows for full controllability of the system, as discussed in
Sec. III�. As expected, since the microwave Rabi frequency
is larger than the rf Larmor frequency, increasing the number
of microwave fields has a large effect. On the other hand, it
was surprising that fixing the microwave amplitude, thereby
substantially decreasing the number of control parameters,
yielded higher fidelity wave forms. We suspect that while
there most likely exist higher fidelity wave forms with con-
trol of both amplitude and phase, increasing the number of
microwave control parameters rapidly increases the dimen-
sion of the search space, requiring many more iterations of
our algorithm to find superior wave forms, on average. This
suspicion is reinforced by Fig. 5�b�, where we consider the
effect of microwave slew time. With our baseline parameters,
it would appear that increasing the microwave slew time
does not really limit the optimized control performance. In
fact, the smallest slew time we considered, 1.0 �s, per-
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FIG. 4. �Color online� Same as Fig. 3, preparing the state 1
�2


4,4�+ 1
2 �
3,3�+ 
3,−3�� with a fidelity of 0.995.
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formed slightly worse than the other slew times, including
the case where the microwave amplitudes are fixed. As a
reminder, the slew time determines the information content
of our wave forms, and thus the number of optimization
variables. Again, we see that for the modest searches we are
performing, decreasing the dimension of the search space
counterbalances the loss of control.

In Fig. 5�c�, we study the effect of the power in the rf and
microwave fields. For these simulations we fixed the ampli-
tudes of the fields and solely control their phases. We find
that varying the microwave power around our baseline
makes little difference. The rf power is slightly more impor-
tant, but increasing the Larmor frequency above the baseline
has a fairly small effect. These results indicate that the slew
rate and bandwidth constraints we have imposed on the rf
magnetic fields are the bottleneck for controlling the system,
and limit the ability to more rapidly control the system
through increases in power. It would appear that the micro-
wave parameters we employ as our baseline are also well
above the limits imposed by this bottleneck and we can
safely reduce the microwave power and slew rates without
sacrificing performance. The rf Larmor frequency we employ
is commensurate with the slew rate constraint.

By optimizing many state preparations for a variety of
control configurations we find state preparation protocols
with this system that take between 50 and 150 �s. We can
compare this to the types of control wave forms that were
implemented in our previous work that employed a nonlinear
ac stark shift to achieve controllability �23�. The wave forms
we find here are about an order of magnitude faster, control a
Hilbert space that is double the dimension, and have negli-
gible decoherence as compared to the intrinsic decoherence
that arises from spontaneous emission.

V. SUMMARY AND OUTLOOK

In this paper we have studied quantum control of the d
=2�2I+1� dimensional Hilbert space associated with coupled
electron spin S=1 /2 and nuclear spin I of alkali atoms in
their electronic ground state, based on interactions with
static, rf, and microwave magnetic fields. Such interactions
allow rapid and essentially decoherence-free dynamics. We

studied a variety of configurations that allow for full control-
lability of the system based on analytic proofs for the most
general control fields considered and numerical studies in
more restricted configurations. With controllability in hand,
we studied the problem of open-loop state preparation, map-
ping a known fiducial state to an arbitrary target state of the
Hilbert space, applied to the specific problem of 133Cs with a
d=16 ground-electronic subspace. Control wave forms can
be found from simple gradient searches in the control land-
scape. We evaluated the performance of a variety of sce-
narios, restricting some control parameters by, e.g., fixing the
amplitudes of the fields or the number of resonant micro-
waves frequencies. We find that under certain conditions,
restricted control yielded better performance. We attribute
this to the complexity in searching a large dimensional con-
trol parameter space.

Implementation of the proposed control protocol dis-
cussed in this paper will require diagnostics to measure the
fidelity of the prepared state with respect to the target. This
can be done via quantum state tomography on the ensemble.
In prior work, we developed and implemented a protocol
whereby the quantum state is estimated via continuous mea-
surement on a single ensemble of identically prepared atoms
�35,36�. To achieve this, the system must be controllable. By
applying a well-chosen wave form in the course of the con-
tinuous measurement, one gains access to an informationally
complete record. One then inverts the measurement history
to obtain a high-fidelity estimate of the initial state, limited
only by the signal-to-noise ratio and decoherence that occurs
during the measurement. In our prior work, combinations of
laser interactions and magnetic fields were employed to yield
an informationally complete measurement record. In that
case, the laser beam acted both as a probe of the atoms to
provide the measurement record and as a control field to
provide a nonlinear light shift on the atoms. To extend this
protocol to the case at hand, we must control the system to
produce an informationally complete set of observables on
the full d-dimensional Hilbert space. Using the microwave
and rf interactions studied here, one can achieve this while
separating the control and measurement functions of the ap-
plied fields. This should be faster and reduce decoherence
induced by photon scattering of the probe. We will study this
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in future work with the goal of rapid and robust quantum
state estimation in a large dimensional Hilbert space.

In addition to state preparation, Lie-algebraic controllabil-
ity implies that there exist wave forms to generate arbitrary
unitary maps on the system. The work considered here cor-
responds to implementing one column of a unitary matrix
because the wave forms we design lead to the intended dy-
namics only on a single fiducial quantum state. Nonetheless,
such capabilities provide a starting point to more general
control tasks such as embedding a qubit in a qudit, or the
implementation of universal qudit control. Moreover, be-
cause the Hamiltonians considered here correspond to gen-
erators of rotations either within irreducible subspaces or on
pseudospins, it gives us a natural starting point to consider
the application of composite pulse sequences developed for
NMR �20� in order to make our protocols more robust to the
inevitable imperfections in our system.
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APPENDIX A: ANALYTIC CONTROLLABILITY

We prove here that our quantum system is controllable
given accesses to the Hamiltonian presented in Sec. II. More
precisely we show that the set of operators
�Fx

�+� ,Fy
�+� ,Fx

�−� ,Fy
�−� ,x ,y	 generates the Lie algebra su�d�,

where d is the dimension of the tensor product space, d
=2�2I+1�. In the language of control theory, a set of opera-
tors is said to “simulate” another operator if we can construct
this operator through linear combination and commutators.
Starting with a generating set, one simulates new operators
which are added to our library. The goal is to use the gen-
erators to simulate a basis for the entire Lie algebra.

We begin by proving a very general theorem relating to
controllability when one is able to perform SU�2� rotations
on an n-dimensional Hilbert space.

Theorem 1. In an d-dimensional Hilbert space with d�2,
if one has access to the irreducible generators of rotations, Jx
and Jy, then in order to fully control the space it is sufficient
to add an operator h that has a nonzero overlap �according to
the trace inner product� with at least one rank-2 irreducible
spherical tensor. That is,

∃q such that Tr�hTq
�2�� � 0 ⇒ �Jx,Jy,h	L.A. = su�d� .

Here we have introduced the orthonormal basis of irreduc-
ible spherical tensor operators,

Tq
�k��J� =�2k + 1

2J + 1�
m

�J,m + q
k,q;J,m�
J,m + q��J,m
 ,

�A1�

satisfying the fundamental commutation rules,

�Jz,Tq
�k�� = qTq

�k�,

�J�,Tq
�k�� = �k�k + 1� − q�q � 1�Tq�1

�k� , �A2�

where J�=Jx� iJy. It follows from these commutators that
given the set �Jx ,Jy ,Tq

�k�	 one can simulate any rank-k irre-
ducible tensor, and since these are an operator basis, the
generators of rotation can map any rank-k operator to any
other rank-k operator. With this property we are now pre-
pared to prove a lemma.

Lemma 1. �Jx ,Jy ,T0
�2�	 generates su�d�.

We prove this by first noting that

�T0
�2�,Tq

�k�� = ck,qTq
�k+1� + dk,qTq

�k−1�. �A3�

The exact form of the constants is irrelevant except for the
fact that there is always some rank-k tensor for which ck,q is
nonzero. Given this, the proof follows by induction. Suppose
our library of simulatable operators contains all operators of
ranks k and k−1. By commuting some rank k operator with
T0

�2� we obtain an operator with support on operators of rank
k−1 and k+1, thus containing a component in the space of
rank k+1 operators that is linearly independent from the cur-
rent set of Hamiltonians in our library. Commutation with the
generators of rotation allow us to simulate all other rank k
+1 operators. Since we can simulate all rank-1 from the gen-
erators �Jx ,Jy	, and the rank-0 operator is the trivial identity
operator, it follows by induction that we can simulate all
rank-k operators that are supported on the Hilbert space, k
�d−1. Therefore �Jx ,Jy ,T0

�2�	 generates su�d�. QED
With this lemma, we see that in order to show Theorem 1,

we need merely to show that the set �Jx ,Jy ,h	 can simulate
the operator T0

�2�. We will do this in essentially three steps.
Before we start we expand the Hamiltonian h in our spheri-
cal basis, h=�k=1

d−1�q=−k
k hq

�k�Tq
�k�.

1. Step 1: Simulate h1=T0
(2)+�k=3

d−1�q=−k
k hq�

(k)Tq
(k)

To simulate h1 we note that h is defined to have some
nonzero rank-2 component. With rotations we can transform
the rank-2 component to T0

�2�. Additionally, since we have all
the rank-1 tensors in our library already, we can remove the
rank-1 piece of h through linear combinations to yield h1.

2. Step 2: Simulate h2=T0
(2)+�k=3

d−1h0�
(k)T0

(k)

Consider the double commutator

†Jz,�Jz,h1�‡ = �
k=3

d−1

�
q=−k

k

q2hq�
�k�Tq

�k�. �A4�

If we take a linear combination h1−a[Jz , �Jz ,h1�] the result-
ing operator has the same coefficients for q=0. For q0�0,
choosing a=1 /q2, we can sequentially remove all rank-2 ten-
sor components, and we are left with h2.

3. Step 3: Simulate T0
(2)

Consider the double commutator
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†Jx,�Jx,h2�‡ =
3

2
T0

�2� +
�6

2
�T2

�k� + T−2
�k��

+
1

4�
k=3

d−1

h0�
�k��2k�k + 1�T0

�k�

+ ��k − 1�k�k + 1��k + 2��T2
�k� + T−2

�k��� .

�A5�

We repeat the process in step 2 to remove the components
from h2 with q�0 to obtain

h2� =
3

2
T0

�2� + �
k=3

d−1

a��k�k�k + 1�
2

T0
�k�. �A6�

If we now take the linear combination h2−2h2� / �k0�k0+1��
we remove the T0

�k0� component, but are left with a nonzero
T0

�2� term. Repeating this procedure for k0=3 , . . . , �d−1�
yields an operator that is proportional to T0

�2�. This completes
our proof of Theorem 1.

With Theorem 1 in hand we are now prepared to show
that �Fx

�+� ,Fy
�+� ,Fx

�−� ,Fy
�−� ,x ,y	 generates the Lie algebra

su�d�. Unfortunately, we do not start off with the ability to
perform the irreducible generators of rotations on the entire
space, and so cannot immediately prove controllability using
Theorem 1. We do, however, have access to the generators of
angular momentum for both the F+ and F− subspaces, and so
we begin by showing that we can simulate any operator that
has support on only one of the two manifolds.

To show controllability of the F+ manifold we require an
operator that has a nonzero overlap with a rank-2 tensor on
that space. Restricted to the F+ subspace, the z operator
looks like a projector onto some particular sublevel,

F+ ,m+��F+ ,m+
. The overlap of this projector with T0

�2� is
Tr�
F+ ,m+��F+ ,m+
T0

�2��=�5 /11�F+ ,m+ 
2,0 ;F+ ,m+�, which
is nonzero for all values of m+. Of course, z has support in
the F− manifold. However, �Fx

�+� ,z� is confined to the F+
manifold. Since commuting by Fx

�+� can not change the rank
of a tensor, we are left with an operator confined to the F+
manifold that has a nonzero overlap with some rank-2 tensor,
and so according to Theorem 1, we have complete control of
the F+ manifold. This proof directly carries over to the F−
manifold.

At this point we have shown that we have full controlla-
bility over both the F+ and the F− subspaces, as well as the
two-dimensional subspace coupled by the resonant micro-
waves. We can write this in matrix form:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1

s2

σ’s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

�A7�
where we have ordered the basis vectors so that the states
coupled by the microwaves are adjacent to each other. We
have shown that we can simulate any operator that only has
matrix elements within the three boxes in Eq. �A7�. This
includes all diagonal operators on the whole matrix as well
as all operators with only nonzero matrix elements on the
superdiagonals �one off the diagonal�. The irreducible repre-
sentations of angular momentum, Jx and Jy, on the entire
space have support only on the superdiagonals. Therefore we
can simulate Jx and Jy. According to Theorem 1 all we need
to show for controllability is that we can simulate some op-
erator with a nonzero overlap with some rank-2 operator.
Since we can simulate any diagonal operator, we can simu-
late T0

�2�. It thus follows that �Fx
�+� ,Fy

�+� ,Fx
�−� ,Fy

�−� ,x ,y	 gen-
erates su�d�.

APPENDIX B: GENERALIZED WIGNER FUNCTION
REPRESENTATION

In dealing with high dimensional spin systems, it is useful
to be able to generate graphical representations of the quan-
tum states which give some geometric intuition. The spin
coherent state Wigner function representation introduced by
Agarwal �37� provides a generalization of the standard
Wigner function based on harmonic oscillator coherent states
used to describe infinite dimensional systems. Given a spin J,
the spin coherent state Wigner function is essentially a mul-
tipole representation on the sphere defined as

W�̂��,�� = �
k

�
m

Tr��̂T̂q
�k��J��Yq

�k���,�� , �B1�

where Yq
�k��� ,�� are the spherical harmonics, and T̂q

�k��J� are
the irreducible spherical tensors given in Eq. �A1�. For a
given spin, the indices describing nontrivial irreducible ten-
sors run from 0�k�2J and −k�q�k. These plots are use-
ful visualization tools because they capture the effect of geo-
metric rotations on the quantum state. Two quantum states
that differ solely by a SU�2� rotation will generate Wigner
functions that also differ from each other by the same physi-
cal rotation.

We seek to generalize this to the case of a tensor product
space of two spins �here electron and nuclear�, equivalent to
the direct sum of two irreducible representations of SU�2� in
the hyperfine subspaces, F and F�. We achieve this by con-
sidering the expanded set of tensors defined by

Tq
�k��F,F�� =� 2k + 1

2F + 1�
m

�F,m + q
k,q;F�,m�
F,m + q�

��F�,m
 . �B2�

The range of the indices is now 
F−F�
�k�F+F� and −k
�q�k. One can easily show that for two spin manifolds, the
set of operators �Tq

�k��F ,F� ,Tq
�k��F ,F�� ,Tq

�k��F� ,F� ,
Tq

�k��F� ,F��	 comprises a complete orthonormal operator ba-
sis for the tensor product space. We again can map these
operators to the spherical harmonics, and for each state get
four spherical Wigner functions: one each for the F and F�
manifolds, and two for the coherences between manifolds.
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We label them WF,F, WF,F�, WF�,F, and WF�,F�. By the Hemi-
ticity of the density operator, WF,F� and WF�,F contain redun-
dant information and are complex, so one need only consider
the real and imaginary part of WF,F�, yielding four real func-
tions.

We scale the radii of the spheres over which the Wigner
function is plotted. For the functions that describe a given
hyperfine manifold, we let the radius of the sphere equal the
population in the subspace, Tr�PF�PF�. In order to set the
radii of the spheres corresponding to the coherences between
the manifolds, we look at the sum of the singular values of
the off-block component of the density matrix,
��m�m�
�F ,m
�
F� ,m��
2. This allows for nonequal dimen-
sions of the two subspaces. Additionally, we scale these “co-
herence spheres” by the ratio of the real vs imaginary parts
of Wigner function. The primary purpose of doing this is to
be able to distinguish between pure superpositions and inco-
herent mixtures between the two manifolds.

To gain some intuition, we show examples of different
states and different representations. Figure 6 shows bar
charts of the absolute values of the density matrix elements

for the six states: 
��ai= 
4,4� and 
��aii= �
4,4�+ 
3,−3���2
are spin coherent states and their superposition; 
��bi, and

��bii are superpositions of spin squeezed states in the two
manifolds along different quadratures; 
��ci, and 
��cii are
coherent superpositions vs incoherent mixtures of a “cat
state” �
3,3�+ 
3,−3�� /�2 in one manifold and a Dicke state

4,0� in the other. The corresponding Wigner functions are
shown in Fig. 7. From these plots we make the following
observations. When restricted to a subspace corresponding to
a given hyperfine manifold, the Wigner functions on the di-
agonal have the familiar forms of SU�2� Wigner functions,
with the radius of the sphere determining the total population
in that subspace. The off-diagonal Wigner functions show the
effect of the coherences, had the entire Hilbert space been
determined by an irreducible representation. This is clearly
seen in Fig. �7��aii�, where the coherences are of the familiar
form for a superposition of “north” and “south” pole spin
coherent states. The effect of geometric rotation is exhibited
in 
��bi and 
��bii. The bar charts do not indicate any simi-
larity between the states, while the Wigner functions are
clearly related by a 90° rotation. Finally, the difference be-
tween coherent superpositions and incoherent mixtures of
states in the two manifolds is clearly seen in Fig. 7.

(a.i) (a.ii)

(b.i) (b.ii)

(c.i) (c.ii)

FIG. 6. �Color online� Representations of states with bar charts
of the absolute values of the density matrix elements. �a.i� is a spin
coherent state 
��ai= 
4,4� and �a.ii� is a superposition of two oppo-
sitely oriented spin coherent states, one for each of the two mani-
folds, 
��aii=

1
�2

�
4,4�+ 
3,−3��. In �b.i�, �b.ii� we show the effects of
rotations on a superposition of spin squeezed states, each deter-
mined as the ground state of Fz

2−Fy in the respective irreducible
manifold. Finally, in �c.i� we have a coherent superposition of the
state 
4,0� and a cat state 1

�2
�
3,3�+ 
3,−3�� and in �c.ii� we have an

incoherent mixture of those two states.

(a.i) (a.ii)

(b.i) (b.ii)

(c.i) (c.ii)

FIG. 7. �Color online� Representations of the six states shown in
Fig. 6 by the generalized spherical Wigner functions. Each state is
represented by four spheres. The spheres on the diagonal are the
standard SU�2� Wigner functions in the F=4 �upper diagonal� and
F=3 �lower diagonal� irreducible subspaces. The radius of these
spheres, ranging from 0 to 1, determines the total population in that
subspace. The off-diagonal spheres represent the coherences be-
tween the two subspaces �see text�.
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