References
[1] M. M. Wilde, P. Hayden, and S. Guha, Information Trade-Offs for Optical Quantum Communication, Phys. Rev. Lett. 108, 140501 (2012).
[2] S. Guha, J. H. Shapiro, and B. I. Erkmen, Capacity of the Bosonic Wiretap Channel and the Entropy Photon-Number Inequality, in 2008 IEEE International Symposium on Information Theory (2008), pp. 91–95.
[3] S. Guha, Q. Zhuang, and B. A. Bash, Infinite-Fold Enhancement in Communications Capacity Using Pre-Shared Entanglement, in 2020 IEEE International Symposium on Information Theory (ISIT) (2020), pp. 1835–1839.
[4] S. Guha, Structured Optical Receivers to Attain Superadditive Capacity and the Holevo Limit, Phys. Rev. Lett. 106, 240502 (2011).
[5] M. M. Wilde, S. Guha, S. Tan, and S. Lloyd, Explicit Capacity-Achieving Receivers for Optical Communication and Quantum Reading, in 2012 IEEE International Symposium on Information Theory Proceedings (2012), pp. 551–555.
[6] M. P. da Silva, S. Guha, and Z. Dutton, Achieving Minimum-Error Discrimination of an Arbitrary Set of Laser-Light Pulses, Phys. Rev. A 87, 052320 (2013).
[7] M. Takeoka, H. Krovi, and S. Guha, Achieving the Holevo Capacity of a Pure State Classical-Quantum Channel via Unambiguous State Discrimination, in 2013 IEEE International Symposium on Information Theory (2013), pp. 166–170.
[8] C. Cui, W. Horrocks, S. Guha, N. Peyghambarian, Q. Zhuang, and Z. Zhang, Quantum Receiver Enhanced by Adaptive Learning, in 2022 Conference on Lasers and Electro-Optics (CLEO) (2022), pp. 1–2.
[9] N. Rengaswamy, K. P. Seshadreesan, S. Guha, and H. D. Pfister, Belief Propagation with Quantum Messages for Quantum-Enhanced Classical Communications, Npj Quantum Inf. 7, (2021).
[10] C. Delaney, K. P. Seshadreesan, I. MacCormack, A. Galda, S. Guha, and P. Narang, Demonstration of a Quantum Advantage by a Joint Detection Receiver for Optical Communication Using Quantum Belief Propagation on a Trapped-Ion Device, Phys. Rev. A 106, 032613 (2022).
[11] H. Krovi, S. Guha, Z. Dutton, and M. P. da Silva, Optimal Measurements for Symmetric Quantum States with Applications to Optical Quantum Communication, in 2014 IEEE International Symposium on Information Theory (2014), pp. 336–340.
[12] M. M. Wilde and S. Guha, Polar Codes for Classical-Quantum Channels, IEEE Trans. Inf. Theory 59, 1175 (2013).
[13] A. Cox, Q. Zhuang, C. Gagatsos, B. Bash, and S. Guha, Transceiver Designs to Attain the Entanglement Assisted Communications Capacity, http://arxiv.org/abs/2208.07979.
[14] M. Takeoka, S. Guha, and M. M. Wilde, Fundamental Rate-Loss Tradeoff for Optical Quantum Key Distribution, Nat. Commun. 5, 5235 (2014).
[15] M. Pant, H. Krovi, D. Englund, and S. Guha, Rate-Distance Tradeoff and Resource Costs for All-Optical Quantum Repeaters, Phys. Rev. A 95, 012304 (2017).
[16] F. Rozpędek, K. Noh, Q. Xu, S. Guha, and L. Jiang, Quantum Repeaters Based on Concatenated Bosonic and Discrete-Variable Quantum Codes, Npj Quantum Information 7, 1 (2021).
[17] G. D. Forney, M. Grassl, and S. Guha, Convolutional and Tail-Biting Quantum Error-Correcting Codes, IEEE Transactions on (2007).
[18] H. Choi, M. Pant, S. Guha, and D. Englund, Percolation-Based Architecture for Cluster State Creation Using Photon-Mediated Entanglement between Atomic Memories, Npj Quantum Information 5, 1 (2019).
[19] P. Dhara, S. J. Johnson, C. N. Gagatsos, P. G. Kwiat, and S. Guha, Heralded Multiplexed High-Efficiency Cascaded Source of Dual-Rail Entangled Photon Pairs Using Spontaneous Parametric Down-Conversion, Phys. Rev. Applied 17, 034071 (2022).
[20] S. Guha, H. Krovi, C. A. Fuchs, Z. Dutton, J. A. Slater, C. Simon, and W. Tittel, Rate-Loss Analysis of an Efficient Quantum Repeater Architecture, Phys. Rev. A 92, 022357 (2015).
[21] P. Dhara, N. M. Linke, E. Waks, S. Guha, and K. P. Seshadreesan, Multiplexed Quantum Repeaters Based on Dual-Species Trapped-Ion Systems, Phys. Rev. A 105, 022623 (2022).
[22] P. Dhara, A. Patil, H. Krovi, and S. Guha, Subexponential Rate versus Distance with Time-Multiplexed Quantum Repeaters, Phys. Rev. A 104, 052612 (2021).
[23] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, On the Stochastic Analysis of a Quantum Entanglement Switch, SIGMETRICS Perform. Eval. Rev. 47, 27 (2019).
[24] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, On the Stochastic Analysis of a Quantum Entanglement Distribution Switch, IEEE Transactions on Quantum Engineering 2, 1 (2021).
[25] M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. Englund, and S. Guha, Routing Entanglement in the Quantum Internet, Npj Quantum Information 5, 25 (2019).
[26] A. Patil, M. Pant, D. Englund, D. Towsley, and S. Guha, Entanglement Generation in a Quantum Network at Distance-Independent Rate, Npj Quantum Information 8, 1 (2022).
[27] A. Patil, J. I. Jacobson, E. Van Milligen, D. Towsley, and S. Guha, Distance-Independent Entanglement Generation in a Quantum Network Using Space-Time Multiplexed Greenberger–Horne–Zeilinger (GHZ) Measurements, in 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) (2021), pp. 334–345.
[28] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, On the Capacity Region of Bipartite and Tripartite Entanglement Switching, SIGMETRICS Perform. Eval. Rev. 48, 45 (2021).
[29] S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, S. Pirandola, and J. H. Shapiro, Quantum Illumination with Gaussian States, Phys. Rev. Lett. 101, 253601 (2008).
[30] S. Guha and B. I. Erkmen, Gaussian-State Quantum-Illumination Receivers for Target Detection, Phys. Rev. A (2009).
[31] S. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola, Microwave Quantum Illumination, Phys. Rev. Lett. 114, 080503 (2015).
[32] S. Guha and J. H. Shapiro, Enhanced Standoff Sensing Resolution Using Quantum Illumination, AIP Conf. Proc. 1363, 113 (2011).
[33] Z. Dutton, J. H. Shapiro, and S. Guha, LADAR Resolution Improvement Using Receivers Enhanced with Squeezed-Vacuum Injection and Phase-Sensitive Amplification, JOSA B (2010).
[34] B.-H. Wu, S. Guha, and Q. Zhuang, Entanglement-Assisted Multi-Aperture Pulse-Compression Radar for Angle Resolving Detection, http://arxiv.org/abs/2207.10881.
[35] H. Qi, K. Brádler, C. Weedbrook, and S. Guha, Quantum Precision of Beam Pointing, http://arxiv.org/abs/1808.01302.
[36] W. He and S. Guha, Optimal-Classical and Quantum-Enhanced Sensing of a Small Transverse Beam Displacement, in Conference on Lasers and Electro-Optics (Optica Publishing Group, Washington, D.C., 2022).
[37] M. R. Grace, C. N. Gagatsos, Q. Zhuang, and S. Guha, Quantum-Enhanced Fiber-Optic Gyroscopes Using Quadrature Squeezing and Continuous-Variable Entanglement, Phys. Rev. Applied 14, 034065 (2020).
[38] S. Hao, H. Shi, C. N. Gagatsos, M. Mishra, B. Bash, I. Djordjevic, S. Guha, Q. Zhuang, and Z. Zhang, Demonstration of Entanglement-Enhanced Covert Sensing, Phys. Rev. Lett. 129, 010501 (2022).
[39] M. Tahmasbi, B. A. Bash, S. Guha, and M. Bloch, Signaling for Covert Quantum Sensing, in 2021 IEEE International Symposium on Information Theory (ISIT) (2021), pp. 1041–1045.
[40] C. N. Gagatsos, B. A. Bash, A. Datta, Z. Zhang, and S. Guha, Covert Sensing Using Floodlight Illumination, Conference on Lasers and Electro-Optics.
[41] Z. Gong, C. N. Gagatsos, S. Guha, and B. A. Bash, Fundamental Limits of Loss Sensing over Bosonic Channels, in 2021 IEEE International Symposium on Information Theory (ISIT) (2021), pp. 1182–1187.
[42] M. R. Grace, C. N. Gagatsos, and S. Guha, Entanglement-Enhanced Estimation of a Parameter Embedded in Multiple Phases, Phys. Rev. Research 3, 033114 (2021).
[43] A. Sajjad, M. R. Grace, Q. Zhuang, and S. Guha, Attaining Quantum Limited Precision of Localizing an Object in Passive Imaging, Phys. Rev. A 104, 022410 (2021).
[44] M. R. Grace and S. Guha, Identifying Objects at the Quantum Limit for Superresolution Imaging, Phys. Rev. Lett. 129, 180502 (2022).
[45] K. K. Lee, C. N. Gagatsos, S. Guha, and A. Ashok, Quantum-Inspired Multi-Parameter Adaptive Bayesian Estimation for Sensing and Imaging, IEEE J. Sel. Top. Signal Process. 1 (2022).
[46] I. Ozer, M. R. Grace, and S. Guha, Reconfigurable Spatial-Mode Sorter for Super-Resolution Imaging, in 2022 Conference on Lasers and Electro-Optics (CLEO) (2022), pp. 1–2.
[47] V. Giovannetti, S. Guha, S. Lloyd, L. Maccone, and J. H. Shapiro, Minimum Output Entropy of Bosonic Channels: A Conjecture, Phys. Rev. A (2004).
[48] S. Guha, Multiple-User Quantum Information Theory for Optical Communication Channels, Ph.D., Massachusetts Institute of Technology, 2008.
[49] M. Pant, D. Towsley, D. Englund, and S. Guha, Percolation Thresholds for Photonic Quantum Computing, Nat. Commun. 10, 1070 (2019).
[50] M. Babaeian, D. T. Nguyen, V. Demir, M. Akbulut, P.-A. Blanche, Y. Kaneda, S. Guha, M. A. Neifeld, and N. Peyghambarian, A Single Shot Coherent Ising Machine Based on a Network of Injection-Locked Multicore Fiber Lasers, Nat. Commun. 10, 1 (2019).
[51] A. Patil, Y. P. Jacobson, D. Towsley, and S. Guha, Measurement-Based Quantum Computation as a Tangram Puzzle, http://arxiv.org/abs/2210.11465.
[52] C. N. Gagatsos and S. Guha, Efficient Representation of Gaussian States for Multimode Non-Gaussian Quantum State Engineering via Subtraction of Arbitrary Number of Photons, Phys. Rev. A 99, 053816 (2019).
[53] A. J. Pizzimenti, J. M. Lukens, H.-H. Lu, N. A. Peters, S. Guha, and C. N. Gagatsos, Non-Gaussian Photonic State Engineering with the Quantum Frequency Processor, Phys. Rev. A 104, 062437 (2021).
[54] K. P. Seshadreesan, P. Dhara, A. Patil, L. Jiang, and S. Guha, Coherent Manipulation of Graph States Composed of Finite-Energy Gottesman-Kitaev-Preskill-Encoded Qubits, Phys. Rev. A 105, 052416 (2022).
[55] K. P. Seshadreesan, H. Krovi, and S. Guha, Continuous-Variable Quantum Repeater Based on Quantum Scissors and Mode Multiplexing, Phys. Rev. Research 2, 013310 (2020).
[56] K. P. Seshadreesan, H. Krovi, and S. Guha, Continuous-Variable Entanglement Distillation over a Pure Loss Channel with Multiple Quantum Scissors, Phys. Rev. A 100, 022315 (2019).
[57] M. R. Grace, Z. Dutton, A. Ashok, and S. Guha, Approaching Quantum-Limited Imaging Resolution without Prior Knowledge of the Object Location, J. Opt. Soc. Am. A Opt. Image Sci. Vis. 37, 1288 (2020).