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What is Quantum Optics?	


–  Not classical optics, but something more and different	


–  Science of non-classical light 	


–  Any science combining light and quantum mechanics	



What is Light?	


–  Electromagnetic waves?	


–  Photons?	





What is Quantum Optics?	
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Not so fast!	





Not so fast!	
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Abstract. It should be apparent from the title of this 
article that the author does not like the use of the word 
"photon", which dates from 1926. In his view, there is no 
such thing as a photon. Only a comedy of errors and 
historical accidents led to its popularity among physicists 
and optical scientists. I admit that the word is short and 
convenient. Its use is also habit forming. Similarly, one 
might find it convenient to speak of the "aether" or "vac- 
uum" to stand for empty space, even if no such thing 
existed. There are very good substitute words for 
"photon", (e.g., "radiation" or "light"), and for "photo- 
nics" (e.g., "optics" or "quantum optics"). Similar objec- 
tions are possible to use of the word "phonon", which 
dates from 1932. Objects like electrons, neutrinos of finite 
rest mass, or helium atoms can, under suitable conditions, 
be considered to be particles, since their theories then have 
viable non-relativistic and non-quantum limits. This pa- 
per outlines the main features of the quantum theory of 
radiation and indicates how they can be used to treat 
problems in quantum optics. 

PACS: 12.20.-m; 42.50.-p 

The underlying science of light is called the Quantum 
Theory of Radiation (QTR), or Quantum Elec- 
troDynamics (QED). There were hints of this subject in 
W. Heisenberg's first papers on matrix mechanics of 1925, 
but the real foundation came in P. Dirac's work of 1927. 
At first, only a few people needed to know much about the 
quantum theory of radiation. With the conception, in 
1951, of the ammonia-beam maser by C. Townes, the 
making of the ruby optical maser by Th. Maiman and the 
helium-neon gas laser by A. Javan, W. Bennett and 
D. Herriott in 1960, and a flood of other devices soon 

It is a pleasure to join in the 60th birthday celebration of the 
Director, Herbert Walther, of the Max-Planck-Institute for Quan- 
tum Optics at Garching, and wish him much happiness and many 
more years of his very great scientific creativity 

afterward, there was a population explosion of people 
engaged in fundamental research and in very useful tech- 
nical and commercial developments of lasers. QTR was 
available, but not in a form convenient for the problems at 
hand. The photon concepts as used by a high percentage 
of the laser community have no scientific justification. It is 
now about thirty-five years after the making of the first 
laser. The sooner an appropriate reformulation of our 
educational processes can be made, the better. 

1 A short history of pre-photonic radiation 

Modern optical theory [2] began with the works of Ch. 
Huyghens and I. Newton near the end of the seventeenth 
century. Huyghen's treatise on wave optics was published 
in 1690. Newton's "Optiks', which appeared in 1704, dealt 
with his corpuscular theory of light. 

A decisive work in 1801 by T. Young, on the two-slit 
diffraction pattern, showed that the wave version of optics 
was much to be preferred over the corpuscular form. 
However, so high was the prestige of I. Newton, that the 
teaching of optical physics at Cambridge University only 
changed from corpuscular to wave optics in 1845. 

There were also the discoveries by A.-M. Amp6re 
(1820, 1825), H. Oersted (1820) and M. Faraday (1831) of 
electromagnetic phenomena in the first half of the nine- 
teenth century, which culminated in the publication of the 
treatise on electromagnetic theory in 1864 by J. C. Max- 
well. With the discovery of electromagnetic waves by H. 
Hertz in 1887, there could be little doubt that light had 
a wave rather than a corpuscular nature. 

By the time of his inaugural lecture [3] as Cavendish 
Professor at Cambridge University in 1871, J. C. Maxwell 
had recognized that matter had to have an atomic struc- 
ture. He foresaw that integral numbers and probability 
theory would play a role in the new physics. Unfortunate- 
ly, Maxwell died in 1879, at the age of 48! During the last 
decade of the nineteenth century, a number of new and 
very unexpected things were discovered: electrons, posi- 
tive ions, X-rays, radioactivity and the photoelectric effect. 

A theory of matter could be based on the atom model 
of J. J. Thomson (1904), in which electrons moved in 



With all due resepect to W. Lamb,  let us try again 	



What is light?	


–  a wave?	


–  a stream of particles (photons)?	



Take the question seriously	


–  test each hypothesis through experimentation! 	





Key signature of wave behavior?	

 –  Interference!	



Double-slit experiment	



Single-slit diffraction	



Double-slit diffraction	





Key signature of particle behavior?	



Einstein: photo-electric effect	


Electrons are released only for light with a frequency   
w such that       is greater than the work function of 
the metal in question	



h!!

But  the  quantum  theory  of  electron  excitation  can 
explain this based on classical electromagnetic fields, 
so  the  photo-electric  effect  only  confirms  that 
electrons are particles.	



Indivisibility	


A particle incident on a barrier is either transmitted or 
reflected.	
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–  Evidently a single photon can behave like a wave or a particle, 	


     depending on the experiment we do.  This is what we know as	


     wave-particle duality.	



–  Does the photon “know” when it hits the first BS if we are doing 	


     a wave or particle experiment and then behaves accordingly?	



–  Wigner’s gedanken experiment:  Delayed Choice!	

 	

    Decide at random whether to put in the second BS only after the	


      photon has passed the first BS	





Wigners experiment was done in 2008	



Delayed-Choice Test of Quantum Complementarity with Interfering Single Photons
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We report an experimental test of quantum complementarity with single-photon pulses sent into a
Mach-Zehnder interferometer with an output beam splitter of adjustable reflection coefficient R. In
addition, the experiment is realized in Wheeler’s delayed-choice regime. Each randomly set value of R
allows us to observe interference with visibility V and to obtain incomplete which-path information
characterized by the distinguishability parameter D. Measured values of V and D are found to fulfill the
complementarity relation V2 !D2 " 1.

DOI: 10.1103/PhysRevLett.100.220402 PACS numbers: 03.65.Ta, 42.50.Ar, 42.50.Xa

As emphasized by Bohr [1], complementarity lies at the
heart of quantum mechanics. A celebrated example is the
illustration of wave-particle duality by considering single
particles in a two-path interferometer [2], where one choo-
ses either to observe interference fringes, associated to a
wavelike behavior, or to know which path of the inter-
ferometer has been followed, according to a particlelike
behavior [3]. Although interference has been observed at
the individual particle level with electrons [4], neutrons
[5], atoms [6,7], molecules [8], only a few experiments
with massive particles have explicitly checked the mutual
exclusiveness of which-path information (WPI) and inter-
ference [9–13].

In the case of photons, it has been pinpointed that mean-
ingful two-path interference experiments demand a single-
photon source [14] for which full and unambiguous WPI
can be obtained, complementary to the observation of
interference [14–16]. In order to rule out a too naive
view of complementarity, which would assume that the
particle could ‘‘know’’ when entering the apparatus which
experimental configuration has been set (record of inter-
ference or determination of WPI) and would then adjust
its behavior accordingly [17], Wheeler proposed the
‘‘delayed-choice’’ scheme where the choice between the
two complementary measurements is made long after the
particle entered the interferometer [18]. Realizations of
that gedanken experiment [19–22] have confirmed that
the chosen observable can be determined with perfect
accuracy even if the choice, made by a quantum random
number generator, is spacelike separated from the entering
of the particle into the interferometer [22].

In 1978, Wooters and Zurek [23] addressed an inter-
mediate situation in which interaction with the interfer-
ometer considered as a quantum device allows one to gain
an imperfect—but significant—knowledge of WPI, with-
out destroying the interference pattern, which remains
observable with a good—although reduced—visibility.
In 1988, Greenberger and Yasin noticed that in an unbal-

anced interferometer as used in some neutron interferom-
etry experiments, one has partial WPI while keeping
interference with limited visibility [24]. The complemen-
tary quantities—WPI and interference visibility—could
then be partially determined simultaneously.

Consistent theoretical analysis of both schemes, inde-
pendently published by Jaeger et al. [25] and by Englert
[26] leads to the inequality [27]

 V2 !D2 " 1 (1)

which puts an upper bound to the maximum values of
simultaneously determined interference visibility V and
path distinguishability D, a parameter that quantifies the
available WPI on the quantum system.

The all-or-nothing cases (V # 1, D # 0) or (V # 0,
D # 1) [4–8,14–16] obviously fulfill inequality (1).
Intermediate situations, corresponding to partial WPI and
reduced visibility, have been investigated using atoms [28],
nuclear spins [29] and faint laser light [30]. However, none
of them has been realized in the delayed-choice scheme.
Elaborating on a delayed-choice setup with true single-
photon pulses in a Mach-Zehnder interferometer [22], we
report here an experimental test of the complementarity
inequality (1) through the realization of intermediate situ-
ations between the two all-or-nothing cases.

Following Englert [26], we point out that the distin-
guishability D constrained by inequality (1) corresponds
to two different notions. The a priori distinguishability,
also called ‘‘predictability,’’ refers to a WPI obtained by
using an unbalanced interferometer with different particle
flux along the two paths. Only the case where path distin-
guishability is introduced a posteriori—i.e., after the en-
tering of the particles into the interferometer—offers the
opportunity of a delayed-choice test of complementarity.
This a posteriori distinguishability can be introduced ei-
ther by creating entanglement between the particle and a
which-path marker [13,31] or by using an interferometer
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Wigners experiment was done in 2008	



with an unbalanced output beam splitter [28]. We have
chosen the latter case by implementing the scheme de-
picted on Fig. 1, corresponding to a Mach-Zehnder inter-
ferometer with a variable output beam splitter (VBS) of
adjustable reflection coefficient R.

The experiment starts from a clock-triggered single-
photon source, based on the photoluminescence of a single
N-V color center in a diamond nanocrystal [32]. The
linearly polarized single-photon pulses are then directed
to a polarization Mach-Zehnder interferometer described
in Ref. [22]. The input polarization beam splitter BS splits
the light pulse into two spatially separated components of
equal amplitudes, associated with orthogonal S and P
polarizations. The two beams then propagate in free space
for 48 m.

The variable output beam splitter VBS is the association
of a polarization beam splitter (PBS) which spatially over-
laps the two beams, an electro-optical modulator (EOM)
which acts as an adjustable wave plate, and a Wollaston
prism (WP) with its polarization eigenstates corresponding
to the S and P polarized channels of the interferometer
(Fig. 2). Given the relative orientation ! of the EOM, the
VBS reflection coefficient R depends on the voltage VEOM
applied to the EOM, according to the relation

 R ! sin22! sin2
!
"
2
VEOM

V"

"
(2)

where V" is the half-wave voltage of the EOM. The
parameters ! and V" have been independently measured
for our experimental conditions and found equal to ! !
24" 1# and V" ! 217" 1 V at the wavelength # !
670 nm which is the emission peak of the negatively
charged N-V color center [32]. This allows R to vary
between 0 and 0.5 when VEOM is varied between 0 and
170 V.

When R ! 0, the VBS is equivalent to a perfectly trans-
parent (or absent) beam splitter. Then, each ‘‘click’’ of one
of the two photodetectors (P1 or P2) placed on the output

ports of the interferometer is associated to a specific path. It
then gives access to the full WPI (D ! 1), and no interfer-
ence effect will be observed (V ! 0). When R ! 0, paths 1
and 2 are partially recombined by the VBS. The WPI is
then partially washed out, up to be totally erased when R !
0:5. On the other hand, interference can be observed when
the phase-shift ! between paths 1 and 2 is varied. The
experiment will consist of checking the relation between D
and V for a given value of R, controlled by the EOM
voltage VEOM.

In order to perform the experimental test of complemen-
tarity in the delayed-choice regime, the chosen configura-
tion of the interferometer, defined by R, has to be causally
isolated from the entering of the photon into the interfer-
ometer. This condition is ensured by a relativistically
spacelike separated random choice [22]. For each mea-
surement, the value of the reflection coefficient of VBS is
randomly chosen between 0 and a given value of R, using a
quantum random number generator (QRNG) located at the
output of the interferometer (Fig. 2). The random numbers
are generated from the amplified shotnoise of a white light
beam which is an intrinsic quantum random process. For
each single-photon trigger pulse, fast comparison of the
amplified shotnoise to the zero level generates a binary
random number 0 or 1 which sets the VBS reflectivity to
either 0 or R by applying the corresponding voltage to the
EOM [see Eq. (2)]. In the laboratory framework, the ran-
dom choice of VBS reflectivity is realized simultaneously
with the entering of the corresponding emitted photon into
the interferometer, ensuring the required spacelike separa-
tion [22].

As meaningful illustration of complementarity requires
the use of single particles, the quantum behavior of the
light field is first tested using the two output detectors
feeding single and coincidence counters with no voltage
applied to the EOM. The output beam splitter is then
absent, and each detector is therefore univocally associated

FIG. 1 (color online). Delayed-choice complementarity-test
experiment. A single-photon pulse is sent into a Mach-
Zehnder interferometer, composed of a 50=50 input beam split-
ter (BS) and a variable output beam splitter (VBS). The reflec-
tion coefficient is randomly set either to the null value or to an
adjustable value R, after the photon has entered the interferome-
ter. The single-photon photodetectors P1 and P2 allow to record
both the interference and the WPI.

VEOM

P2

Path 1

Path 2 Φ

EOM
P1

VBS

QRNG

WP

PBS

4.2 MHz
Clock

S

P

FIG. 2 (color online). Variable output beam splitter (VBS)
implementation. The optical axis of the polarization beam split-
ter (PBS) and the polarization eigenstates of the Wollaston prism
(WP) are aligned, and make an angle ! with the optical axis of
the EOM. The voltage VEOM applied to the EOM is randomly
chosen accordingly to the output of a Quantum Random Number
Generator (QRNG), located at the output of the interferometer
and synchronized on the 4.2-MHz clock that triggers the single-
photon emission.
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to a given path. In this situation, we measure the correlation
parameter ! [14,16] which is equivalent to the second
order correlation function at zero delay g!2"!0". For an ideal
single-photon source, quantum optics predicts a perfect
anticorrelation ! # 0, in agreement with the particlelike
image that the photon cannot be detected simultaneously in
the two paths of the interferometer. With our source [32],
we find ! # 0:15$ 0:01. This value, much smaller than 1,
shows that we are indeed close to the pure single-photon
regime [33].

The delayed-choice test of complementarity with single-
photon pulses is performed with the EOM randomly
switched for each photon sent in the interferometer, corre-
sponding to a random choice between two values 0 and R
of the VBS reflectivity. The phase-shift ! between the two
arms of the interferometer is varied by tilting the polariza-
tion beam splitter PBS of VBS with a piezoelectric actuator
(see Fig. 2). For each photon, we record the chosen con-
figuration of the interferometer, the detection events, and
the actuator position. All raw data are saved in real time
and are processed only after a run is completed. The events
corresponding to each configuration of the interferometer
are finally sorted. For a given value R, the wavelike infor-
mation of the light field is obtained by measuring the
visibility of the interference, predicted to be

 V # 2
!!!!!!!!!!!!!!!!!!!
R!1% R"

p
: (3)

The results, depicted in Fig. 3, show a reduction of V when
the randomly applied value of R decreases.

To test inequality (1), a value of the distinguishability D
is then required, to qualitatively qualify the amount of WPI
which can be extracted for each value of R. We introduce
the quantity D1 (resp. D2), associated to the WPI on path 1
(resp. path 2):

 D1 # jp!P1; path 1" % p!P2; path 1"j (4)

 D2 # jp!P1; path 2" % p!P2; path 2"j (5)

where p!Pi; path j" is the probability that the particle fol-
lows path j and is detected on detector Pi. For a single
particle arriving on the output beam splitter, one obtains

 D1 # D2 #
""""""""
1
2
% R

"""""""": (6)

The distinguishability parameter D is finally defined as
[26]

 D # D1 &D2 # j1% 2Rj: (7)

In order to test this relation, we estimate the values of D1
and D2 by blocking one path of the interferometer and
measuring the number of detections N1 and N2 on detectors
P1 and P2, which are statistically related to D1 and D2
according to [22,28]:

 D1 #
1
2
jN1 % N2j
N1 & N2

#

path 2 blocked
(8)

 D2 #
1
2
jN1 % N2j
N1 & N2

#

path 1 blocked
: (9)

These measurements are also performed in the delayed-
choice regime, using the procedure described above. We
finally obtain independent measurements of D and V for
different values of the reflection coefficient R, randomly
applied to the interferometer. The final results, depicted on
Fig. 4, lead to V2 &D2 # 0:97$ 0:03, close to the maxi-
mal value permitted by inequality (1) even though each
quantity varies from 0 to 1.

The effects observed in this delayed-choice experiment
are in perfect agreement with quantum mechanics predic-
tions. No change is observed between a so-called ‘‘normal-
choice’’ experiment and the ‘‘delayed-choice’’ version. It
demonstrates that the complementarity principle cannot be
interpreted in a naive way, assuming that the photon at the
input of the interferometer could adjust its nature accord-
ing to the experimental setup installed. As Bohr pointed
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FIG. 3 (color online). Interference visibility V measured in the
delayed-choice regime for different values of VEOM. (a)–
(c) correspond to VEOM ' 150 V (R # 0:43 and V #
93$ 2%), VEOM ' 40 V (R # 0:05 and V # 42$ 2%), and
VEOM # 0 (R # 0 and V # 0). Each point is recorded with
1.9 s acquisition time. Detectors dark counts, corresponding to
a rate of 60 s%1 for each, have been substracted to the data.
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to a given path. In this situation, we measure the correlation
parameter ! [14,16] which is equivalent to the second
order correlation function at zero delay g!2"!0". For an ideal
single-photon source, quantum optics predicts a perfect
anticorrelation ! # 0, in agreement with the particlelike
image that the photon cannot be detected simultaneously in
the two paths of the interferometer. With our source [32],
we find ! # 0:15$ 0:01. This value, much smaller than 1,
shows that we are indeed close to the pure single-photon
regime [33].

The delayed-choice test of complementarity with single-
photon pulses is performed with the EOM randomly
switched for each photon sent in the interferometer, corre-
sponding to a random choice between two values 0 and R
of the VBS reflectivity. The phase-shift ! between the two
arms of the interferometer is varied by tilting the polariza-
tion beam splitter PBS of VBS with a piezoelectric actuator
(see Fig. 2). For each photon, we record the chosen con-
figuration of the interferometer, the detection events, and
the actuator position. All raw data are saved in real time
and are processed only after a run is completed. The events
corresponding to each configuration of the interferometer
are finally sorted. For a given value R, the wavelike infor-
mation of the light field is obtained by measuring the
visibility of the interference, predicted to be
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The results, depicted in Fig. 3, show a reduction of V when
the randomly applied value of R decreases.

To test inequality (1), a value of the distinguishability D
is then required, to qualitatively qualify the amount of WPI
which can be extracted for each value of R. We introduce
the quantity D1 (resp. D2), associated to the WPI on path 1
(resp. path 2):

 D1 # jp!P1; path 1" % p!P2; path 1"j (4)

 D2 # jp!P1; path 2" % p!P2; path 2"j (5)

where p!Pi; path j" is the probability that the particle fol-
lows path j and is detected on detector Pi. For a single
particle arriving on the output beam splitter, one obtains
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The distinguishability parameter D is finally defined as
[26]

 D # D1 &D2 # j1% 2Rj: (7)

In order to test this relation, we estimate the values of D1
and D2 by blocking one path of the interferometer and
measuring the number of detections N1 and N2 on detectors
P1 and P2, which are statistically related to D1 and D2
according to [22,28]:

 D1 #
1
2
jN1 % N2j
N1 & N2

#

path 2 blocked
(8)
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These measurements are also performed in the delayed-
choice regime, using the procedure described above. We
finally obtain independent measurements of D and V for
different values of the reflection coefficient R, randomly
applied to the interferometer. The final results, depicted on
Fig. 4, lead to V2 &D2 # 0:97$ 0:03, close to the maxi-
mal value permitted by inequality (1) even though each
quantity varies from 0 to 1.

The effects observed in this delayed-choice experiment
are in perfect agreement with quantum mechanics predic-
tions. No change is observed between a so-called ‘‘normal-
choice’’ experiment and the ‘‘delayed-choice’’ version. It
demonstrates that the complementarity principle cannot be
interpreted in a naive way, assuming that the photon at the
input of the interferometer could adjust its nature accord-
ing to the experimental setup installed. As Bohr pointed
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VEOM # 0 (R # 0 and V # 0). Each point is recorded with
1.9 s acquisition time. Detectors dark counts, corresponding to
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Light  is  both  a  particle  and  a 
wave at the same time.  	


	


What property we see depends on 
what  property  we  decide  to 
measure.	


	


This  is  totally  in  line  with  our 
general quantum theory.	





BTW, it works for ultracold atoms too!	





We need a quantum theory of light where behaviors 	


   such as wave-particle duality is built in	



–  A formal procedure exists for obtaining a quantum theory from a 	


      known classical theory based on Lagrange – Hamilton formalism.	


	


–  One cannot “prove” that this procedure is correct.  It is justified only	


      by repeated observation that quantum theories obtained in this fashion	


      “work”, in the sense that their predictions agree with experiment.	


	


–  This should not surprise us.  Quantum Mechanics contains new physics	


      that is absent from Classical Mechanics and cannot be derived from it.	


	


–  An unfortunate consequence is that we often seem to pull ideas out of	


      thin air when we teach quantum mechanics.  The problem gets worse	


      when we try to do things quickly, e. g., a 50 minute lecture on the 	


      quantum theory of light.	


	





Quantization of the Electromagnetic Field	



Starting point:  Maxwell’s equations from classical Electromagnetism	



!"E(r,t) = 1
#0

$(r,t)

!"B(r,t) = 0

!%E(r,t) = & '
't
B(r,t)

!%B(r,t) = 1
c2

'
't
E(r,t)+ 1

#0c
2 j(r,t)

For simplicity we consider empty space without charges or currents, and use 
the two last Maxwell equations to derive a wave equation	
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paraxial waves 	


propagating 	


along the z-axis	



In  Quantum  Electrodynamics  (QED) 
the ME’s are still valid, but the fields 
E and B become operators that depend 
on  space  and  time  just  like  the 
classical electric and magnetic fields.	


	





Electromagnetic Field in a 1-Dimensional Cavity	


Cavity of length L, cross section A, and volume V = L A,  field  	



M	

 M	



z	



y	



x	



Any field inside the cavity can be expressed as a superposition of the cavity  
normal modes, which are standing wave solutions to the wave equation with 
nodes on the mirror surfaces.	



E = x  Ex

kj =
! j

c
= j"
L

Aj =
2! j

2mj

"0V
Ex (z,t) = Ajqj (t)sin(kjz)

j=1

!

" ,	

 ,	



Here          are the time varying amplitudes for the different modes, and      is	


chosen so      has units of electric field (V/m) and          has units of length (m).    	



qj (t) Aj
Ex qj (t)



For mode number  j  we have electric and magnetic fields (the latter can be	


found from       using Maxwells equations)	

Ex

 
Ex
( j ) (z,t) = Ajqj (t)sin(kjz), By

( j ) (z,t) = Aj

k jc2
!qj (t)cos(kjz), !qj (t) =

d
dt
qj (t)

Each normal mode is an independent degree of freedom that can be 
quantized by itself.	



Using classical E & M we can show that the energy of the field in mode j is	
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EM field in mode j	



Writing the field energy in this form is highly suggestive.  	



 
H = 1

2
mj! j

2qj2 +
1
2
mj !qj2

Harmonic Oscillator	



H = 1
2
m! 2x2 + 1

2
mv2

= 1
2
m! 2x2 + 1

2m
p2

Vs.	



Quantum Theory	



x! x̂ = x

 
p! p̂ = "i! d

dx

 x̂, p̂[ ] = i!

Êx ! qj " q̂ j

 B̂y !mj !qj " p̂ j

 q̂ j , p̂ j[ ] = i!, Êx , B̂y!" #$ % 0

Postulate (leap of faith): EM field in a normal mode is a harmonic oscillator	





Quick review of the Quantum Harmonic Oscillator 	



 

 1 

The Electron Oscillator/Lorentz Atom 
 
Consider a simple model of a classical atom, in which the electron is harmonically 

bound to the nucleus  
 
 
              

! 

Fen = "m#0
2x  

 
 
               resonance frequency 

 
 
 
 
Note: We should regard this as a model of the response of an atom, rather than 

a classical model of the atom itself. 
 
 
We can justify this response model as follows.  Quantum mechanics suggests we 

can describe the atom as a point-like nucleus and an electron cloud.  As a rough 

approximation we can take the latter to be of uniform density 

! 

"  and radius R, i.e. 

 

! 

e = 4"
3 #R 3

$ # = 3e
4"R 3  . 

 
We now borrow a well known result for the force on a test charge due to a 

spherical charge distribution, and find 
 

 

! 

Fne = " eq r( )
4#$0

r
r 3 = "Fen  , 

 
where 

! 

r is the displacement of the nucleus away from the center of the electron 

cloud, and 

! 

q r( )  is the charge contained in a sphere of radius r and centered on the 

cloud center, i. e. the force is equal to the force arising if the charge 

! 

q r( )  was 

located at the cloud center.  Electron charge outside radius r contributes no force.  

Setting 

! 

r = "x  we get  
 

! 

n

! 

e

! 
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! 

x
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Standard paradigm:   mass on a spring	



Observables:  	

 x̂, p̂ Hamiltonian:  	

 Ĥ = 1
2
m! 2 x̂2 + 1

2m
p̂2

! = K /m m

 En = !! (n +1/ 2), n " 0

Energy eigenvalues and eigenfunctions:	

 Ĥ! n (z) = En! n (z) "

! n (z)" e#$x
2 /2Hn ($x)

Hn:  Hermite polynomial 	



V (x)

E0 = !! (1 / 2)
 E1 = !! (3 / 2)

 En = !! (n +1/ 2)

 !E = !"



Energy eigenfunctions (stationary states):	

 look at probability density                	

! n (x)
2
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n = 0 n = 5 n = 30

Mean position in state 	

! n (x)Unique features:	



Heisenberg uncertainty relation	

  !x!p = !(n +1/ 2)

Quantum fluctuations	


 
!xn =

!
m"

n +1/ 2

x̂ = 0



Creation and annihilation operators	



Introduce dimensionless variables	

  X̂ = x̂ m! 2!, P̂ = p̂ 2m!!

Define	

 â = X̂ + iP̂

â† = X̂ ! iP̂

annihilation operator	



creation operator	



â†â! n = n! n

! n"1 # â! nCan show that	



(# of excitations)	



! n+1 " â†! n

annihilation/creation 	


of an excitation	



 	

 â
â† ! n

! n+1

! n"1

What is a “phonon”?	

 A quantum of exitation in a Harmonic Oscillator 	





EM field in mode j	
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Harmonic Oscillator	



H = 1
2
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2
mv2
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Quantum Theory	



x! x̂ = x

 
p! p̂ = "i! d

dx

 x̂, p̂[ ] = i!

Êx ! qj " q̂ j

 B̂y !mj !qj " p̂ j

Vs.	



 q̂ j , p̂ j[ ] = i!, Êx , B̂y!" #$ % 0

Postulate (leap of faith): EM field in a normal mode is a harmonic oscillator	



Back to…	





Observables:  	

q̂ (! Êx ), p̂ (! B̂y ) Hamiltonian:  	

Ĥ = 1
2
m! 2q̂2 + 1

2m
p̂2

M	

 M	



z	



y	



x	



QED paradigm:   normal mode j in cavity 	



 En = !! (n +1/ 2), n " 0

Energy eigenvalues and eigenfunctions:	

 Ĥ! n = En! n "

Number states	



V (x)

E0 = !! (1 / 2)
 E1 = !! (3 / 2)

 En = !! (n +1/ 2)

 !E = !"

! n

No “wavefunction”, use	


Dirac notation	

 ! n " ! n



Creation and annihilation operators	



Introduce dimensionless variables	

  Q̂ = q̂ m! 2!, P̂ = p̂ 2m!!

Define	

 â = Q̂ + iP̂

â† = Q̂ ! iP̂

annihilation operator	



creation operator	



What is a “photon”?	

 A quantum of exitation in a Normal Mode of the EM field	



â†â ! n = n ! n

! n"1 # â ! nCan show that	



! n+1 " â† ! n

annihilation/creation 	


of an excitation	



 	

 â
â† ! n

! n+1

! n"1

number states	





Photons as particles	



 Standing wave normal modes            photons are delocalized in space	

!

 We can make superpositions of standing waves that correspond to wavepackets	


    & use these as our normal modes	

 photons become localized in space	

!

M	

 M	



z	



y	



x	



It is in this sense than we can talk about, e. g, a photon traveling along a specific	


   path in an interferometer, as in the first part of the lecture.	





!q̂n = q0 n +1/ 2 "

(!Êx )n = E0 n +1/ 2

Êx ! q̂ = 0Mean field in state	



More about number states (Foch states):	



Quantum fluctuations	



! n

Vacuum fluctuations	


!q̂n=0 = q0 / 2 "

(!Êx )n=0 = E0 / 2

Does a laser emit light in a number state with a well defined number of photons?	





EM field in mode j	
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Harmonic Oscillator	
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2
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2
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2
m! 2x2 + 1

2m
p2

Quantum Theory	



x! x̂ = x

 
p! p̂ = "i! d

dx

 x̂, p̂[ ] = i!

Êx ! qj " q̂ j

 B̂y !mj !qj " p̂ j

Vs.	



 q̂ j , p̂ j[ ] = i!, Êx , B̂y!" #$ % 0

Postulate (leap of faith): EM field in a normal mode is a harmonic oscillator	



Back to…	





Number states are highly non-classical	

 – look at the probability density                	

! n (x)
2

1/4/16 7:45 PMWolfram Demonstrations Project

Page 1 of 6http://demonstrations.wolfram.com/HarmonicOscillatorEigenfunctions/

SEARCH EXPLORE LATEST ABOUT

Harmonic Oscillator Eigenfunctions

Absolute value of the harmonic oscillator eigenfunctions. The harmonic oscillator is the most important exactly solvable
model of quantum mechanics. The ground state eigenfunction minimizes the uncertainty product. With increasing quantum
number, the square of the absolute value of the eigenfunctions approaches the probability distribution of a classical particle
in a harmonic potential with inverse square root singularities at the turning points.

Contributed by: Michael Trott

Files require 

Related Demonstrations
More by Author

Related Topics
Chemistry
College Physics
General Chemistry
Mechanics
Physical Chemistry

Quantum Mechanics
Quantum Physics

1/4/16 7:46 PMWolfram Demonstrations Project

Page 1 of 6http://demonstrations.wolfram.com/HarmonicOscillatorEigenfunctions/

SEARCH EXPLORE LATEST ABOUT

Harmonic Oscillator Eigenfunctions

Absolute value of the harmonic oscillator eigenfunctions. The harmonic oscillator is the most important exactly solvable
model of quantum mechanics. The ground state eigenfunction minimizes the uncertainty product. With increasing quantum
number, the square of the absolute value of the eigenfunctions approaches the probability distribution of a classical particle
in a harmonic potential with inverse square root singularities at the turning points.

Contributed by: Michael Trott

Files require 

Related Demonstrations
More by Author

Related Topics
Chemistry
College Physics
General Chemistry
Mechanics
Physical Chemistry

Quantum Mechanics
Quantum Physics

1/4/16 7:48 PMWolfram Demonstrations Project

Page 1 of 6http://demonstrations.wolfram.com/HarmonicOscillatorEigenfunctions/

SEARCH EXPLORE LATEST ABOUT

Harmonic Oscillator Eigenfunctions

Absolute value of the harmonic oscillator eigenfunctions. The harmonic oscillator is the most important exactly solvable
model of quantum mechanics. The ground state eigenfunction minimizes the uncertainty product. With increasing quantum
number, the square of the absolute value of the eigenfunctions approaches the probability distribution of a classical particle
in a harmonic potential with inverse square root singularities at the turning points.

Contributed by: Michael Trott

Files require 

Related Demonstrations
More by Author

Related Topics
Chemistry
College Physics
General Chemistry
Mechanics
Physical Chemistry

Quantum Mechanics
Quantum Physics

n = 0 n = 5 n = 30

A quasi-classical state is a minimum-uncertainty oscillating wavepacket	



1/4/16 7:45 PMWolfram Demonstrations Project

Page 1 of 6http://demonstrations.wolfram.com/HarmonicOscillatorEigenfunctions/

SEARCH EXPLORE LATEST ABOUT

Harmonic Oscillator Eigenfunctions

Absolute value of the harmonic oscillator eigenfunctions. The harmonic oscillator is the most important exactly solvable
model of quantum mechanics. The ground state eigenfunction minimizes the uncertainty product. With increasing quantum
number, the square of the absolute value of the eigenfunctions approaches the probability distribution of a classical particle
in a harmonic potential with inverse square root singularities at the turning points.

Contributed by: Michael Trott

Files require 

Related Demonstrations
More by Author

Related Topics
Chemistry
College Physics
General Chemistry
Mechanics
Physical Chemistry

Quantum Mechanics
Quantum Physics

1/4/16 7:45 PMWolfram Demonstrations Project

Page 1 of 6http://demonstrations.wolfram.com/HarmonicOscillatorEigenfunctions/

SEARCH EXPLORE LATEST ABOUT

Harmonic Oscillator Eigenfunctions

Absolute value of the harmonic oscillator eigenfunctions. The harmonic oscillator is the most important exactly solvable
model of quantum mechanics. The ground state eigenfunction minimizes the uncertainty product. With increasing quantum
number, the square of the absolute value of the eigenfunctions approaches the probability distribution of a classical particle
in a harmonic potential with inverse square root singularities at the turning points.

Contributed by: Michael Trott

Files require 

Related Demonstrations
More by Author

Related Topics
Chemistry
College Physics
General Chemistry
Mechanics
Physical Chemistry

Quantum Mechanics
Quantum Physics

ground	


state	



quasi-classical	


state	



X	



P	





!" (t) = e#"
2 2 ("ei$t )n

n!n% ! n

We can make a quasi-classical state             as a superposition of number states	

!" (t)

! X̂ " cos(#t), P̂ " sin(#t)

Probability of detecting n photons	



P(n) = e!"
2 " 2n

n!
(shot noise)	



!" (t) = e#"
2 2 ("ei$t )n

n!n% ! n &

ground	


state	



coherent	


state	



A coherent state is the equivalent superposition of photon number states	



Êx ! Q̂ ! cos("t), B̂y ! P̂ ! sin("t)

P,By

Q,Ex



An ideal laser comes very close to 	


emitting a coherent state.	



	


This is the closest we can come to a  	


classical, monochromatic light field.	



	



ground	


state	



coherent	


state	



By

Ex



Other Interesting Topics in Quantum Optics	



–  The quantum beam splitter (photons are bosons)	



–  Quantum theory of interferometers	



–  Two-level atoms in single-mode cavities (Jaynes-Cummings model)	



–  Generalizations of the Jaynes-Cummings model	



–  Excited atoms interacting with the vacuum, decoherence & decay	



–  How to make number states, squeezed states, coherent states, etc.	



–  Quantum theory of photodetection	



–  Quasi-probability distributions and non-classical light	
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Atoms and Photons:  
 Confessions of a Self-Admitted 
                            Control Freak 



-  behavior of light and matter on scales from micro- to macroscopic ✓    

Quantum Mechanics is our reigning theory of everything 

Quantum Computing, Quantum Information Science 

-  quantum mechanics is a resource that allows us to do different things ✓    

Central Challenge: Quantum Control 

-  how to make quantum systems do what we want, not what comes naturally ?  

Light, Atoms and Quantum Control 



Experimental Setup – “NMR” w/Cold Atoms  



Quantum Control for Fun and Science 


