Optics & Photonics Winter School 2016

Branches of Optics

- Geometrical Optics
- Physical Optics
- Quantum Optics

- \rightarrow light as a ray
- \rightarrow light as a wave
- \rightarrow light as wave/particle

Fields in Optical Sciences

- Optical Engineering
- Imaging Science
- Photonics
- Optical Physics

Optical Physics & Lasers

R. Jason Jones College of Optical Sciences University of Arizona

<u>Outline</u>

- Light, matter, and their interaction: overview of optical physics
- Quantum description of matter
- The semi-classical model
- Lasers
- Lasers as precision tools

Models of Light-Matter Interaction

Classical picture:

Semi-classical picture:

Quantum picture:

"classical" light, "classical" matter classical light, quantum matter quantum light, quantum matter

<u>Classical electron-oscillator model</u>

(~1900) Lorentz ad hoc hypothesis: atom responds as if it were attached to nucleus with a spring.

<u>Classical electron-oscillator model</u>

(~1900) Lorentz ad hoc hypothesis: atom responds as if it were attached to nucleus with a spring.

<u>Classical electron-oscillator model</u>

(~1900) Lorentz ad hoc hypothesis: atom responds as if it were attached to nucleus with a spring.

<u>Classical electron-oscillator model</u>

(~1900) Lorentz ad hoc hypothesis: atom responds as if it were attached to nucleus with a spring.

Why?

<u>Classical electron-oscillator model</u>

(~1900) Lorentz ad hoc hypothesis: atom responds as if it were attached to nucleus with a spring.

Damped & driven simple harmonic oscillator:

$$\frac{d^2 \vec{x}}{dt^2} + \left(\frac{b}{m}\right) \frac{d \vec{x}}{dt} + \omega_s^2 \vec{x} = \left(\frac{e}{m}\right) \vec{E}$$

$$\implies \text{classical expression for}$$
atomic response to light field.

Predicts average dipole response
$$\vec{d} = -e \hat{x}(t) = x(\omega) \tilde{E}(t)$$

for ensemble of atoms of atomic ensemble

Predictions of the CEO model:

However, fails to predict: saturation, optical gain, spontaneous emission...

 \rightarrow We need a better model for the atom!

Elements of quantum theory

Wave equations for light and matter

Quantum description of the atom

<u>Historical events in the development of quantum theory</u>

<u>Historical events in the development of quantum theory</u>

1924: de Broglie and wave-particle duality of matter

de Broglie wave length:

$$\lambda_{matter} = \frac{h}{P} \xrightarrow{\Rightarrow} \frac{Planck's}{constant}$$

 $\sum_{matter} \frac{h}{P} \xrightarrow{\Rightarrow} \frac{Planck's}{constant}$

• Analogy with "classical" light waves

• Analogy with "classical" light waves

Wave equation for light

Plane waves

 $E(\vec{r},t) = E_{o} \cos(\omega t - \vec{k}\cdot\vec{r})$

Spherical waves

$$E(\vec{r},t) = \frac{1}{r} E_{o} \cos(\omega t - k \cdot r)$$

2-slit diffraction of light

1927: Davisson & Germer experiment \rightarrow electron diffraction

How to describe the "matter waves"?

 \rightarrow See next talk on "atom optics"

Some postulates of quantum mechanics:

• The wavefunction for a particle tells us everything we can know about that particle.

$$\Psi(\vec{r},t) = \operatorname{probability}_{\operatorname{amplitud}}$$

$$(1 - \operatorname{dimension})$$

$$\sum_{x_{i}}^{x_{i}} |\Psi(x,t)|^{2} dx = \begin{cases} \operatorname{Probability}_{x_{i}} \text{ to find the} \\ \operatorname{particle}_{x_{i}} \text{ between} \\ x_{i} & x_{$$

(Born's statistical interp.)

Some postulates of quantum mechanics:

• The Schrodinger equation describes the time evolution of the wavefunction.

it
$$\frac{\partial}{\partial t}\Psi = -\frac{\hbar^2}{2m}\nabla^2\Psi + V(\vec{r},t)\Psi$$

 \rightarrow The wave equation for matter!

For time-independent problems, it can be shown...

$$\begin{bmatrix} -\frac{h^2}{2m} \nabla^2 + V(r) \end{bmatrix} \Psi_n = E \Psi_n$$

or
$$\hat{H} \Psi_n = E_n \Psi_n$$

where E_n is the total energy
of the particle in quantum
state Ψ_n .

For example, if it is a free particle (V=0)...

$$-\frac{h^2}{2m}\frac{d^2}{dx^2}\psi_{cx} = E\psi_{cx}$$

For example, if it is a free particle (V=0)...

$$-\frac{h^2}{2m} \frac{d^2}{dx^2} \frac{\psi}{dx^2} = E \frac{\psi}{dx}$$

$$C_3 \frac{d^2}{dx^2} \frac{\psi}{dx^2} = (-\frac{2m}{2^2}E) \frac{\psi}{dx}$$

For example, if it is a free particle (V=0)...

$$-\frac{h^2}{2m} \frac{d^2}{dx^2} \frac{f(x)}{dx^2} = E f(x)$$

$$\int \frac{d}{dx^2} \psi(x) = \left(-\frac{2m}{2^2}E\right) \psi(x)$$

=> place wave solutions OC $\Psi(x) = \Psi_{o}^{o} \sin\left(\sqrt{2mE_{fr}}x\right)$ $\Psi(x) = \Psi e^{i\sqrt{2mE_x}x}$

Free particle continued...

 $\lambda = \frac{\lambda}{P}$

Single 2 - well defined momentum p

Now consider these two wavefunctions:

Dr large, 2 well 4 Sit small, 2 not where is the particle? Since $\lambda = \frac{h}{p}$ more rigorous calculation shows $\Delta x \cdot \Delta P \geq \frac{1}{2} | H. U. P. !$ DX K 1/

Quantum model of the hydrogen atom

$$\vec{T}$$
 \vec{T} \vec{T}

Using the Coulomb potential in the Schrodinger equation, one can now obtain the allowed quantum states and energies for the hydrogen atom.

=>
$$E_n = -\frac{13.6}{n^2} eV$$
 ; $n = 1, 2, 3...$
 $\Psi_n(\chi, \chi, Z)$

Graphs of hydrogen atom wavefunctions

Semi-classical model of light-matter interaction

<u>Classical light field - quantum atom</u>: solve the full Schrodinger equation

it
$$\sqrt[3]{t} \Psi(t; H) = -\frac{\hbar^2}{2m} \sqrt[3]{t} \Psi(t; H) + V(t; H) \Psi(t; H)$$

Coulomb force
Lorentz force

Several assumptions built into solution e.g. light field is a small perturbation

video for numerical simulations of solution ...

(http://www.falstad.com/mathphysics.html)

Semi-classical model of light-matter interaction

Semi-classical picture predicts:

-real atom with discrete energy levels (infinite lifetime)

n=1 n=2

-optical absorption

-saturation of absorption or gain

spontaneous emission?

need full quantum theory "quantum optics"

Light Amplification by Stimulated Emission of Radiation

Basic elements:

Light Amplification by Stimulated Emission of Radiation

Basic elements:

Optical cavities & Gaussian beams

Resonant modes of the optical cavity:

-find solutions of the wave equation given certain **approximations** and **boundary conditions**

$$\nabla^{2}E(\mathbf{r},t) - \frac{1}{c^{2}}\frac{\partial^{2}}{\partial t^{2}}E(\mathbf{r},t) = 0.$$

$$E(\vec{r},t) = \frac{1}{2}\left[\Sigma(\vec{r})e^{-i\omega^{2}} + c.c.\right]$$

$$monochrometric field$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}$$

$$abla_T^2 \mathcal{E}_0 + 2ik \frac{\partial \mathcal{E}_0}{\partial z} = 0,$$
Paraxial wave equation

Solutions to the paraxial wave equation: Example: Hermite-Gaussian polynomials

Optical gain: need at least 3 energy levels to have more gain than absorption

Optical gain: need at least 3 energy levels to have more gain than absorption

Optical gain: need at least 3 energy levels to have more gain than absorption

Rate equations determine population densities i.e. pumping rate, decay rate, emission rate

Characterizing optical gain: the atomic cross-section

Characterizing optical gain: the atomic cross-section

Characterizing optical gain: the atomic cross-section

<u>Steady-state lasing:</u>

- gain requires population inversion
- initial field provided by spontaneous emission
- power in field grows until it significantly reduces population in level 2 → gain saturation
- steady-state lasing threshold is reach when round-trip gain = round-trip losses

Lasers as precision tools

Precision spectroscopy and atomic clocks

Femtosecond frequency combs

Generating laser light in the extreme ultraviolet

Precision Spectroscopy: unveiling the quantum world

Dispersive spectrometer

• Spectral resolution 10⁻⁷

Sir Isaac Newton 1642-1726

High-resolution laser spectroscopy

• Spectral resolution 10⁻¹⁵

ca. 1960 C. Townes

Maser

Tests of fundamental science:

- QED, Lamb Shift
- Rydberg constant
- α variation?
- Proton rms charge radius

State-of-the-art in precision spectroscopy

Laser 2

State-of-the-art in precision spectroscopy

doi:10.1038/nature12941

An optical lattice clock with accuracy and stability at the 10^{-18} level

B. J. Bloom^{1,2}*, T. L. Nicholson^{1,2}*, J. R. Williams^{1,2}†, S. L. Campbell^{1,2}, M. Bishof^{1,2}, X. Zhang^{1,2}, W. Zhang^{1,2}, S. L. Bromley^{1,2} & J. Ye^{1,2}

- Laser coherence lasting several seconds
- Precision spectroscopy at the Hz level

Laser 2

Atomic clock basics

Unperturbed atom

Cs microwave fountain

stability ~ 10^{-14}

Atomic clock basics

Unperturbed atom

Cs microwave fountain

stability ~ 10^{-14}

Optical transitions stability $\sim 10^{-18}$

Example: mapping the geoid

The femtosecond frequency comb

From seconds to femtoseconds...

Spacing between fs comb "teeth" = 1/T

2005 Nobel Prize

"...for their contributions to the development of laser-based precision spectroscopy, including the **optical frequency comb technique**".

"for his contribution to the quantum theory of optical coherence" "for their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique"

Photo: J.Reed

Photo: Sears.P.Studio

Photo: F.M. Sch

Roy J. Glauber

John L. Hall

Theodor W. Hänsch

Pulses are not identical...

Any phase relationship between pulses?

Applications of frequency combs

Next generation optical atomic clocks 2) Precision atomic spectroscopy Feedback System Locks Oscillator to Detector atomic resonance 1) Highly stable lasers ν_o Atoms **Clock Oscillator** High-Q resonator Laser Laser linewidth < 1 Hz 3) frequency comb **Clock pulse train Optical Freq. Synthesizer** (Clockwork) & Divider (fs laser) 456 986 240 494 158 Counter

Applications of frequency combs

Time domain implications of the fs comb

Time domain implications of the fs comb

Implications for the time domain....

Implications for the time domain....

Implications for the time domain....

- •Access controlled, high electric field strengths
- •Femtosecond pulse synchronization
- •Sub-cycle control of ionization dynamics
 - → "Absolute" phase detection→ Auger pump/probe spectroscopy
- Attosecond bursts of XUV light

Implications for the time domain....

Access controlled, high electric field strengths
Femtosecond pulse synchronization
Sub-cycle control of ionization dynamics
→ "Absolute" phase detection → Auger pump/probe spectroscopy

Attosecond bursts of XUV light

Extending the fs frequency comb to the XUV

Extending the fs frequency comb to the XUV

VUV spectroscopy still dominated by dispersive spectrometers

• Spectral resolution 10⁻⁷

• Atomic/molecular spectroscopy (e.g. H, He, He⁺ H₂, H₂⁺ O₂, NH₃, H₂O...)

- precision tests of fundamental constants (α , m_e/m_p) and QED
- Molecular spectroscopy of astrophysical importance.
- Direct measurement of Rydberg transitions.

 \rightarrow H₂ dissociation energy

• Nuclear Spectroscopy?

- Isomeric M1 transition in Th-229 (~160 nm)
- Thorium doped LiCAF crystals
- A solid-state nuclear frequency standard?

UCLA

Peik et al, Europhys Lett. 61, 181 (2003) Beck et al, PRL 98, 142501 (2007) **Reliergert et al, PRL 104, 200802(2010)** Campbell, et al, PRL 106, 226001 (2011)
Extension to the VUV and XUV

Ultrafast science

MHz repetition rates \rightarrow higher photon flux

Extension to the VUV and XUV

<u>Ultrafast science</u> MHz repetition rates \rightarrow higher photon flux

Photoemission spectroscopy of condensed matter

 \rightarrow Signal limited by space charge effects per pulse

Coherent diffractive imaging

 \rightarrow High flux short wavelength source

Zhang et. al., Opt. Express, 21, 2197 (2013)

• "Robust" approach: harmonics generated into "soft" x-ray regime

- "Robust" approach: harmonics generated into "soft" x-ray regime
- Main features explained by simple "three-step" model

- "Robust" approach: harmonics generated into "soft" x-ray regime
- Main features explained by simple "three-step" model

- "Robust" approach: harmonics generated into "soft" x-ray regime
- Main features explained by simple "three-step" model

- "Robust" approach: harmonics generated into "soft" x-ray regime
- Main features explained by simple "three-step" model

Step 1: Tunnel ionizationStep 2: Electron evolution and accelerationStep 3: Recollision with ionic core.

Single amplified pulse

P.B. Corkum, PRL 49, 2117 (1994) M. Lewenstein et. al., PRA 49, 2117 (1994)

Ο

- "Robust" approach: harmonics generated into "soft" x-ray regime
- Main features explained by simple "three-step" model

Step 1: Tunnel ionizationStep 2: Electron evolution and accelerationStep 3: Recollision with ionic core.

fs pulse train \rightarrow low energy per pulse

P.B. Corkum, PRL 49, 2117 (1994) M. Lewenstein et. al., PRA 49, 2117 (1994)

Ο

- "Robust" approach: harmonics generated into "soft" x-ray regime
- Main features explained by simple "three-step" model

Thanks for your attention!

