ASTRONOMICAL OPTICS

EXTREME SCIENCE WITH EXTREME TECHNOLOGY

DAE WOOK KIM

ASSISTANT PROFESSOR

COLLEGE OF OPTICAL SCIENCES / RICHARD F. CARIS MIRROR LAB

UNIVERSITY OF ARIZONA

DKIM@OPTICS.ARIZONA.EDU

FAMILY VACATION IN HAWAII MAUNAKEA VISITOR INFORMATION STATION

Onizuka Center for International Astronomy above the clouds

W. M. KECK TELESCOPE TWO BEAUTIFUL 10M SEGMENTED TELESCOPES

When I studied Astronomy and Physics in late 90s, this telescope was my dream instrument.

LBTI **HIGH RESOLUTION IN THE 23 M BASELINE DIRECTION**

Unique common-mount dual-aperture system, LBT Interferometer, w/23 m resolution capabilities.

Optimized for observations in the thermal infrared w/ secondary Adaptive Optics system.

http://www.lbto.org/

LARGE BINOCULAR TELESCOPE TWO 8.4M PRIMARY MIRRORS ON A SINGLE STRUCTURE

One of UA's latest achievements, which is currently the world largest and most unique telescope on a single structure.

THREE GIANTS

FOR THREE BIG QUESTIONS

1. EARLY UNIVERSE DEEP FIELD IMAGING: HUBBLE ULTRA DEEP FIELD

2.4 arcminutes = 0.04 degree (Note: Full Moon = ~0.5 degree)

Looking back approximately 13 billion years (between 400 and 800 million years after the Big Bang).

Image from http://en.wikipedia.org/wiki/Hubble_Deep_Field

GIANT CAMERA GMT, 24.5M PRIMARY USING SEVEN 8.4M SEGMENTS

The ultimate telescope which defines a new category called 'Extremely Large Telescope.'

10X resolution compared to the Hubble Space Telescope.

2. WHOLE UNIVERSE SURVEY ASTRONOMY: ALL-SKY MAP

~2.7K Cosmic microwave background: 9 years of WMAP (Wilkinson Microwave Anisotropy Probe) data

Image from http://en.wikipedia.org/wiki/Cosmic_microwave_background

GIANT CAMCORDER LSST, 3.5 BY 3.5 DEGREE FOV W/ 3200 MEGAPIXEL CAMERA

Monolithic 8.4 m primary-tertiary (on a single substrate)

Synoptic means "looking at all aspects" including 6 colors, billions of object, and time (video camera).

3. SUN SOLAR ASTRONOMY

Sunspot fine structure (Solar scientists want ~20km resolution.)

It is the closest and brightest star in the sky.

Image from http://atst.nso.edu/node/387

GIANT MICROSCOPE DKIST USING 4.2M PRIMARY MIRROR

It is imaging the extend object, Sun.

Image from atst.nso.edu

Sunspot fine structure (Solar scientists want ~20km resolution.) Off-axis optical design to control stray light issues

CHALLENGES

MANUFACTURING OF NEXT GENERATION OPTICAL SYSTEMS UTILIZING FREEFORM OPTICS

DKIST PRIMARY MIRROR 4.2M DIAMETER OFF-AXIS PARABOLIC MIRROR

Optical parameter	Value	Note
Radius of curvature	16 m	
Conic constant	-1	Parabola
Off-axis distance	4 m	Distance from the parent vertex
Mirror diameter	4.2 m	
Aspheric departure	$\sim 9 \text{ mm}$	Peak-to-valley departure

Freeform departure of the DKIST primary mirror (left) and high order shape after subtracting the first 8 standard Zernike terms (right).

Dae Wook Kim, Peng Su, Chang Jin Oh, and James H. Burge, "Extremely Large Freeform Optics Manufacturing and Testing," CLEO-PR, Optical Society of America (2015)

LARGE FREE-FORM OPTICS ASPHERIC DEPARTURE FROM BEST FIT SPHERE

GMT primary mirror has more than 13 mm aspheric departure from its best fit sphere.

The local curvature and shape keep changing, so that it becomes a freeform fabrication issue.

ACTIVE SHAPE CONTROL 0.6M STRESSED LAP ON 4.2M DKIST PRIMARY

D. W. Kim et al., "Advanced Technology Solar Telescope 4.2 m Off-axis Primary Mirror Fabrication," in Classical Optics 2014, OTh2B.3

TWO ESSENTIAL TECHNOLOGIES

FABRICATION AND METROLOGY

1. FABRICATION

CCPM – COMPUTER CONTROLLED POLISHING MACHINE 5 AXIS PRECISION MACHINE

All axis are fully computer controlled during the fabrication process. The tool follows the local normal of the optics using tilt axis.

HYDRAULIC SUPPORT FOR FABRICATION AND TESTING

118 hydraulic supports to mount the thin (aspect ratio ~ 50) flexible mirror About 30 mirror bending modes are used for active optics correction.

PRIMARY MIRROR 4.2M ZERODUR OFF-AXIS MIRROR

4.2m SCHOTT Zerodur mirror blank w/ near 0 CTE

118 hydraulic supporting fixtures on the back side of the blank

DKIST PRIMARY ON CCPM 4.2M ZERODUR OFF-AXIS MIRROR

Radius of curvature: 16m (Conic constant: -1) Off-axis distance (from parent vertex): 4m

ACTIVE SOLUTION (~\$1.5M) STRESSED LAP ON THE 4.2M DKIST PRIMARY MIRROR

0.6m Stressed lap is updating its shape (Zernike 4-10) at ~100 Hz to maintain its local fit between the lap and the workpiece.

D. W. Kim et al., "Advanced Technology Solar Telescope 4.2 m Off-axis Primary Mirror Fabrication," in Classical Optics 2014, OTh2B.3

S. West et al., "Development and results for Stressed-lap polishing of large telescope mirrors," OTh2B.4

ACTIVE SOLUTION (~\$1.5M) STRESSED LAP ON THE 4.2M DKIST PRIMARY MIRROR

0.6m Stressed lap is updating its shape (Zernike 4-10) at ~100 Hz to maintain its local fit between the lap and the workpiece.

D. W. Kim et al., "Advanced Technology Solar Telescope 4.2 m Off-axis Primary Mirror Fabrication," in Classical Optics 2014, OTh2B.3

S. West et al., "Development and results for Stressed-lap polishing of large telescope mirrors," OTh2B.4

ACTIVELY SHAPE CONTROLLED LAP 1.2M STRESSED LAP ON 8.4M LSST PRIMARY-TERTIARY

WALKING ON THE WATER SWIMMING POOL FILLED WITH CORNSTARCH AND WATER

https://www.youtube.com/watch?v=f2XQ97XHjVw

3D schematic Rigid Conformal lap structure (exploded and cut in half).

D. W. Kim and J. H. Burge, "Rigid conformal polishing tool using non-linear visco-elastic effect," Opt. Express. 18, 2242-2257 (2010)

http://www.crayola.com/products/original-silly-putty-product/

PASSIVELY SHAPE CONTROLLED LAP RC LAP ON THE 8.4M GMT PRIMARY SEGMENT

D. W. Kim and J. H. Burge, "Rigid conformal polishing tool using non-linear visco-elastic effect," Opt. Express. 18, 2242-2257 (2010)

TIF CALIBRATION PERFORMANCE OF THE ADVANCED CCOS PROCESS

TIFs using the RC lap with an orbital tool motion: measured 3D TIF (left), theoretical 3D TIF (middle), and radial profiles of them (right).

Preston's coefficient κ is calibrated to fit the theoretical TIF to the measured one.

$$\Delta z(x, y) = \kappa \cdot P(x, y) \cdot V_T(x, y) \cdot \Delta t(x, y)$$

D. W. Kim and J. H. Burge, "Rigid conformal polishing tool using non-linear visco-elastic effect," Opt. Express. 18, 2242-2257 (2010)

2. METROLOGY

LASER TRACKER INTERFEROMETRIC / TIME OF FLIGHT MEASUREMENT

Large working distance (tens of meters) Accuracy up to 15µm (typical angle at 2m)

 \mathbf{m}

LASER TRACKER PLUS LOW ORDER SURFACE SHAPE MEASUREMENT

SMR positioner (automated)

Retroreflector for DMI: 4 places at edge of segment

Laser tracker and 4 DMI (distance-measuring interferometers)

Tom L. Zobrist ; James H. Burge ; Hubert M. Martin; Accuracy of laser tracker measurements of the GMT 8.4 m off-axis mirror segments. Proc. SPIE 7739, 77390S (July 19, 2010)

MEASUREMENT W/ LT+

COMPARISON BETWEEN INTERFEROMETRIC VS. LT+ DATA

H. M. Martin, R. G. Allen, J. H. Burge, D. W. Kim, J. S. Kingsley, M. T. Tuell, S. C. West, C. Zhao and T. Zobrist, "Fabrication and testing of the first 8.4 m off-axis segment for the Giant Magellan Telescope," Proc. SPIE 7739, (2010)

SCOTS SOFTWARE CONFIGURABLE OPTICAL TEST SYSTEM

Advanced deflectometry system measuring surface slope with both high precision and large dynamic range.

Figure by Alex Maldonado

Peng Su, et al., "Software configurable optical test system: a computerized reverse Hartmann test," Applied Optics, Vol. 49, Issue 23, pp. 4404-4412 (2010)

MEASUREMENT W/ SCOTS COMPARISON BETWEEN INTERFEROMETRIC VS. SCOTS DATA

SCOTS ignores 21 low-order polynomials, so same polynomials are subtracted from principal test.

Excellent agreement. Much of difference is error in interferometric test at edge of segment.

H. M. Martin, R. G. Allen, J. H. Burge, D. W. Kim, J. S. Kingsley, M. T. Tuell, S. C. West, C. Zhao and T. Zobrist, "Fabrication and testing of the first 8.4 m off-axis segment for the Giant Magellan Telescope," Proc. SPIE 7739, (2010)

36

IR DEFLECTOMETRY FOR FREEFORM PART METROLOGY

DEMO: Table-top SLOTS is measuring a sphere

Tianquan Su, et al., "Measuring rough optical surfaces using scanning long-wave optical test system. 1. Principle and implementation," Applied Optics, Vol. 52, Issue 29, pp. 7117-7126 (2013)

Dae Wook Kim, Tianquan Su, Peng Su, Chang Jin Oh, Logan Graves, and James H. Burge, "Accurate and rapid IR metrology for the manufacturing of freeform optics," SPIE Newsroom, DOI: 10.1117/2.1201506.006015 (July 6, 2015)

SLOTS FOR 4.2M ATST MIRROR UNIQUE SOLUTION TO GUIDE FINE GRINDING PROCESS

Vertical and horizontal line (~300° C hot wire emitting ~10um wavelength) scanning is being made.

Dae Wook Kim, Tianquan Su, Peng Su, Chang Jin Oh, Logan Graves, and James H. Burge, "Accurate and rapid IR metrology for the manufacturing of freeform optics," SPIE Newsroom, DOI: 10.1117/2.1201506.006015 (July 6, 2015)

C

MEASUREMENT W/ SLOTS

12 MICRON GRIT GROUND 4.2M DKIST OFF-AXIS MIRROR

Slope magnitude rms: 102.3015 urad Surface rms: 20.3872um (w/o piston)

The measured DKIST surface map demonstrates the excellent measuring capability of SLOTS for the ground surface.

High spatial resolution (e.g. 353 pixels across the 4.2m diameter) with dynamic range measuring >100µm range.

Dae Wook Kim, Chang Jin Oh, Peng Su, and James H. Burge, "Advanced Technology Solar Telescope 4.2 m Off-axis Primary Mirror Fabrication," in Optical Fabrication and Testing (OF&T) (Optical Society of America), OTh2B.3 (2014)

GIANTS OFTEN WEAR VERY SPECIAL EYEGLASSES.

ADAPTIVE OPTICS

ADAPTIVE OPTICS

ADAPTIVE OPTICS

LBT ADAPTIVE OPTICS SECONDARY ADAPTIVE OPTICS IN ACTION

THREE GIANTS ARE RAPIDLY AND TRULY COMING.

STEWARD OBSERVATORY RICHARD F. CARIS MIRROR LAB (RFCML)

The world largest 8.4m optics manufacturing capability

H. M. Martin, R. G. Allen, J. H. Burge, D. W. Kim, J. S. Kingsley, M. T. Tuell, S. C. West, C. Zhao and T. Zobrist, "Fabrication and testing of the first 8.4 m off-axis segment for the Giant Magellan Telescope," Proc. SPIE 7739, (2010)

45

POLISHING/FIGURING RUN 8.4M GMT OFF-AXIS SEGMENT

Difference (bottom left) between the measured removal map (top left) and the predicted removal map (top right) after the 27 hour CCOS run using a 250mm RC lap on the 8.4m GMT off-axis segment.

46

GMT SEGMENT 1 OUT OF 7 HUMAN'S 1ST 8.4M OFF-AXIS SEGMENT GOT COMPLETED.

18nm RMS (after bending modes subtraction) over the full aperture.

H. martin, et al, "Production of 8.4 m segments for the Giant Magellan Telescope," in Modern Technologies in Space- and Ground-based Telescopes and Instrumentation II, Proc. 8450 SPIE (2012)

http://www.gmto.org

LSST M1-M3 HUMAN'S 1ST 8.4M HYBRID OPTICS GOT COMPLETED IN 2015.

It meets the given structure function specification.

<~30nm RMS (after bending modes subtraction) for both M1 and M3 surface shape.

4.2M DKIST FINE GRINDING RUN USING 0.6M STRESSED LAP & 0.3M LAP WITH CERAMIC TILES

	Fabrication parameter	Value	Note
	Loose abrasive grit size	25 µm	Aluminum Oxide
All and a second second	Polishing pressure	0.3 psi	
	Tool sizes	300 - 600 mm	Circular tool diameter
	Orbital stroke speed	30 rpm	
1	Orbital stroke radius	$75-150 \ mm$	[4]
	Preston's constant	~794	Calibrated from
	r restoir s constant	µm/psi(m/sec)hour	measurement
P A	Mirror aspect ratio	~50	Mirror diameter / thickness

A series of fine grinding runs have been performed using 25 µm loose abrasive grits.

Detailed fabrication parameters are listed in the Table.

Dae Wook Kim, Peng Su, Chang Jin Oh, and James H. Burge, "Extremely Large Freeform Optics Manufacturing and Testing," CLEO-PR, Optical Society of America (2015)

DKIST primary mirror surface shape error (from the ideal shape) changes from 15µm to 2µm RMS between 3 successive fine grinding runs using 25µm Aluminum Oxide grits (surface shape measured by SLOTS).

Dae Wook Kim, Peng Su, Chang Jin Oh, and James H. Burge, "Extremely Large Freeform Optics Manufacturing and Testing," CLEO-PR, Optical Society of America (2015)

DKIST 4.2M PRIMARY MIRROR WORLD LARGEST MICROSCOPE OPTIC COMPLETED IN 2015

<~20nm RMS (after 30 bending modes subtracted) optical surface over the clear aperture

CONTROLLING THE FUTURE BY PREDICTING THE FUTURE

The "expected" convergence of residual surface error of DKIST 4.2m primary mirror was simulated and predicted in Feb. 2015.

Six month later, we arrived at the "predicted" destination.

FINAL NOTES

SOME DEEP MOTIVATIONS

DESTINY AS A SCIENTIST AND ENGINEER

THE UNIVERSITY OF ARIZONA.

Image from http://xkcd.com/242/

DISCOVERY EXPECTING SOMETHING WE DON'T KNOW AT THE MOMENT

NEXT GENERATIONS WHO WILL LOVE AND APPRECIATE WHAT WE DO TODAY.

I wish, one day, Aiden and Daniel will bring their kids to their dream places.

ACKNOWLEDGMENT

This material is based in part upon work supported by AURA through the National Science Foundation for support of the Advanced Technology Solar Telescope.

This material is based in part upon work supported by AURA through the National Science Foundation under Scientific Program Order No. 10 as issued for support of the Giant Segmented Mirror Telescope for the United States Astronomical Community, in accordance with Proposal No. AST-0443999 submitted by AURA.

LSST project activities are supported in part by the National Science Foundation through Governing Cooperative Agreement 0809409 managed by the Association of Universities for Research in Astronomy (AURA), and the Department of Energy under contract DE-AC02-76-SF00515 with the SLAC National Accelerator Laboratory. Additional LSST funding comes from private donations, grants to universities, and in-kind support from LSSTC Institutional Members.

This material is based in part upon work performed for the "Post-processing of Freeform Optics" project supported by the Korea Basic Science Institute.