Newton's Color Experiments

 1671

Newton's Conclusions

\downarrow White light has seven constituent components: rea, orange, yellow, green, blue, indigo and violet.
> Dispersed light can be recombined to form white light.

- Magenta and purple can be obtained by combining only portions of the spectrum.

Color and Color Vision

The perceived color of an object depends on four factors:

1. Spectrum of the illumination source
2. Spectral Reflectance of the object
3. Spectral response of the photoreceptors (including bleaching)
4. Interactions between photoreceptors

Light Sources

Pigments

Subtractive Colors

Pigments (e.g. paints and inks) absorb different portions of the spectrum

Blackbody Radiation

For lower temperatures, blackbodies appear red.
As they heat up, the
shift through the spectrum towards blue.

Our sun looks like a 6500K blackbody.

Incandescent lights are poor efficiency blackbodies radiators.

Gas-Discharge \& Fluorescent Lamps

A low pressure gas or vapor is encased in a glass tube. Electrical connections are made at the ends of the tube. Electrical discharge excites the atoms and they emit in a series of spectral lines. We can use individual lines for illumination (e.g. sodium vapor) or ultraviolet lines to stimulate phosphors.

CIE Standard Illuminants

Illuminant A - Tungsten lamp looking like a blackbody of 2856 K Illuminant B - (discontinued) Noon sunlight.
Illuminant C - (discontinued) Noon sunlight.
Illuminant D55 - (Occasionally used) 5500 K blackbody
Illuminant D65-6500 K blackbody, looks like average sunlight and replaces Illuminants B and C.
Illuminant D75 - (Occasionally used) 7500 K blackbody

Illuminants A and D_{65}

Additive Colors

Self-luminous Sources (e.g. lamps and CRT phosphors) emit different spectrums which combine to give a single apparent source.

Spectral Output	Spectral Output		
Spectral			
Output		\quad	Add the spectrums of
:---			
the different light			
sources to get the			
spectrum of the			
apparent source			
entering the eye.			

Color Models

- Attempt to put all visible colors in a ordered system.
- Mathematics based, art based and perceptually based systems.

RGB Color Model

A red, green and blue primary are mixed in different proportions to give a color

$$
\begin{aligned}
& (1,0,0) \text { is red } \\
& (0,1,0) \text { is green } \\
& (0,0,1) \text { is blue }
\end{aligned}
$$

24 bit color on computer monitors devote 8 bits (256 values) to each primary color (i.e. red can take on values ($0 . . .255$) / 255)
$(1,1,1)$ is white
$(0,0,0)$ is black

HSB (HSV) Color Model

Hue - color is represented by angle Saturation - amount of white represented by radial position
Brightness (Value) - intensity is represented by the vertical dimension

HLS Color Model

Hue - color is represented by angle Lightness - intensity is represented by the vertical dimension Saturation - amount of white represented by radial position

CIE

- 90 year old commission on color
- Recognized as the standards body for illumination \& color.
- Has defined standard illuminants and human response curves.

Luminosity Functions

The spectral responses of the eye are called the luminosity functions. The The $V(\lambda)$ curve (photpic response) is for cone vision and the $V^{\prime}(\lambda)$ curve (scoptopic response) is for rod vision. $\mathrm{V}(\lambda)$ was adopted as a standard by the CIE in 1924. There are some errors for $\lambda<500 \mathrm{~nm}$, that remain. The $\mathrm{V}^{\prime}(\lambda)$ curve was adopted in 1951 and assumes an observer younger than 30 years old.

Purkinje Shift

Note how the brightness of reds and blues change with decreasing illumination. This is due to the sensitivity of the eye shifting from photopic to scoptic

Human Color Models

Observer adjusts the Luminances of R, G and B
lights until they match C_{λ}

$\mathrm{R}=700.0 \mathrm{~nm}$
$\mathrm{G}=546.1 \mathrm{~nm}$
$B=435.8 \mathrm{~nm}$

$$
C_{\lambda}=r^{\prime}(\lambda) R+g^{\prime}(\lambda) G+b^{\prime}(\lambda) B
$$

1931 CIE Color Matching Functions

Color Matching Functions

1931 CIE Color Matching Functions

The CIE defined three theoretical primaries x^{\prime}, y^{\prime} and z^{\prime} such that the color matching functions are everywhere positive and the "green" matching function is the same as the photopic response of the eye.

Conversion $x^{\prime} y^{\prime} z^{\prime}$ to r'g'b'

$$
\left[\begin{array}{l}
r^{\prime} \\
\mathrm{g}^{\prime} \\
\mathrm{b}^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0.41846 & -0.15860 & -0.08283 \\
-0.09117 & 0.25243 & 0.01571 \\
0.00092 & -0.00255 & 0.17860
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
\mathrm{y}^{\prime} \\
z^{\prime}
\end{array}\right]
$$

The $x^{\prime}, y^{\prime}, z^{\prime}$ are more convenient from a book-keeping standpoint and the relative luminance is easy to determine since it is related to y^{\prime}.

The consequence of this conversion is that the spectral distribution of the corresponding primaries now have negative values. This means they are a purely theoretical source and can not be made.

Tristimulus Values X, Y, Z

$$
\begin{aligned}
& X=\int_{0}^{\infty} P(\lambda) x^{\prime}(\lambda) d \lambda \\
& Y=\int_{0}^{\infty} P(\lambda) y^{\prime}(\lambda) d \lambda \\
& Z=\int_{0}^{\infty} P(\lambda) z^{\prime}(\lambda) d \lambda
\end{aligned}
$$

The tristimulus values are coordinates in a three dimensional color space. They are obtained by projecting the spectral distribution of the object of interest $\mathrm{P}(\lambda)$ onto the color matching functions.

Chromaticity Coordinates x, y, z

$$
\begin{array}{ll}
\mathrm{x}=\frac{\mathrm{X}}{\mathrm{X}+\mathrm{Y}+\mathrm{Z}} & \begin{array}{l}
\text { The chromaticity coordinates } \\
\text { are used to normalize out the } \\
\text { brightness of the object. This way, } \\
\text { the color and the brightness can be } \\
\text { spearated. The coordinate } \mathrm{z} \text { is not } \\
\text { independent of } \mathrm{x} \text { and } \mathrm{y} \text {, so this is } \\
\text { a two dimensional space. }
\end{array} \\
\mathrm{Z}=\frac{\mathrm{Y}+\mathrm{Y}+\mathrm{Z}}{\mathrm{Z}+\mathrm{Y}+\mathrm{Z}}=1-\mathrm{X}-\mathrm{y}
\end{array}
$$

Chromaticity Coordinates

Light Source
Spectral

Distribution \quad\begin{tabular}{l}
Object Spectral

Reflectance or

Transmittance

\quad

Spectral Distribution

of Light entering the

eye.
\end{tabular}

Example - spectrally Pure Colors

$$
\begin{array}{cl}
\text { Suppose } P(\lambda)=\delta\left(\lambda-\lambda_{0}\right) \\
X=\int_{0}^{\infty} \delta\left(\lambda-\lambda_{0}\right) x^{\prime}(\lambda) d \lambda=x^{\prime}\left(\lambda_{0}\right) & x=\frac{x^{\prime}\left(\lambda_{0}\right)}{x^{\prime}\left(\lambda_{0}\right)+y^{\prime}\left(\lambda_{0}\right)+z^{\prime}\left(\lambda_{0}\right)} \\
Y=\int_{0}^{\infty} \delta\left(\lambda-\lambda_{0}\right) y^{\prime}(\lambda) d \lambda=y^{\prime}\left(\lambda_{0}\right) & y=\frac{y^{\prime}\left(\lambda_{0}\right)}{x^{\prime}\left(\lambda_{0}\right)+y^{\prime}\left(\lambda_{0}\right)+z^{\prime}\left(\lambda_{0}\right)} \\
Z=\int_{0}^{\infty} \delta\left(\lambda-\lambda_{0}\right) z^{\prime}(\lambda) d \lambda=z^{\prime}\left(\lambda_{0}\right) & z=1-x-y
\end{array}
$$

Plotting x vs. y for spectrally pure colors gives the boundary of color vision

CIE Chromaticity Chart

Example - White Light

Suppose $\mathrm{P}(\lambda)=1$

$$
\begin{array}{ll}
X=\int_{0}^{\infty} x^{\prime}(\lambda) d \lambda=1 & x=\frac{1}{1+1+1}=0.33 \\
Y=\int_{0}^{\infty} y^{\prime}(\lambda) d \lambda=1 & y=\frac{1}{1+1+1}=0.33 \\
Z=\int_{0}^{\infty} z^{\prime}(\lambda) d \lambda=1 & z=1-x-y=0.33
\end{array}
$$

CIE Chromaticity Chart

Example - MacBeth Color Checker

Blue Sky

Example - Blue Sky Patch

The Macbeth color checker assumes that
Illuminant C is used for illumination.

Multiply the spectral distribution of Illuminant C by the spectral reflectance of the color patch to get the light entering the eye.

Example Blue Sky Patch

$$
\begin{aligned}
& \mathrm{X}=\sum \mathrm{P}(\lambda) \mathrm{x}^{\prime}(\lambda) \Delta \lambda=188.1 \Delta \lambda \\
& \mathrm{Y}=\sum \mathrm{P}(\lambda) \mathrm{y}^{\prime}(\lambda) \Delta \lambda=192.6 \Delta \lambda \\
& \mathrm{Z}=\sum \mathrm{P}(\lambda) \mathrm{z}^{\prime}(\lambda) \Delta \lambda=379.9 \Delta \lambda \\
& \mathrm{X}=188.1 /(188.1+192.6+379.9)=.247 \\
& \mathrm{y}=192.6 /(188.1+192.6+379.9)=.253
\end{aligned}
$$

Example - MacBeth Color Checker

Example - Dark Skin Patch

Example Dark Skin

$$
\begin{aligned}
& \mathrm{X}=\sum \mathrm{P}(\lambda) \mathrm{x}^{\prime}(\lambda) \Delta \lambda=113.6 \Delta \lambda \\
& \mathrm{Y}=\sum \mathrm{P}(\lambda) \mathrm{y}^{\prime}(\lambda) \Delta \lambda=98.8 \Delta \lambda \\
& \mathrm{Z}=\sum \mathrm{P}(\lambda) \mathrm{z}^{\prime}(\lambda) \Delta \lambda=66.2 \Delta \lambda \\
& \mathrm{x}=188.1 /(188.1+192.6+379.9)=0.41 \\
& \mathrm{y}=192.6 /(188.1+192.6+379.9)=0.35
\end{aligned}
$$

CIE Chromaticity Diagram

Think of this as a distorted version of the HSB color model.
$\mathrm{W}=$ White Point $(0.33,0.33)$
$\mathrm{D}=$ Dominant Wavelength (hue)
$\mathrm{p}=$ excitation purity $=\frac{\mathrm{WA}}{\mathrm{WD}}$

C = Complimentary Color
$\mathrm{p}=$ excitation purity $=\frac{\mathrm{WB}}{\mathrm{WC}}$

MacAdam Ellipses

Just noticeable differences for two similar colors is nonlinear on the CIE diagram. Would like a color space that these ellipses become circles. (ellipses are 3 x larger than actuality)

1976 CIELUV

Television and Video
$L *=116\left(\frac{\mathrm{Y}}{\mathrm{Y}_{\mathrm{n}}}\right)^{1 / 3}-16$ for $\frac{\mathrm{Y}}{\mathrm{Y}_{\mathrm{n}}}>0.008856$
$L^{*}=903.292\left(\frac{\mathrm{Y}}{\mathrm{Y}_{\mathrm{n}}}\right)$ for $\frac{\mathrm{Y}}{\mathrm{Y}_{\mathrm{n}}} \leq 0.008856$
$u^{*}=13 L *\left[u^{\prime}-u_{n}\right]$
$\mathrm{v}^{*}=13 \mathrm{~L} *\left[\mathrm{v}^{\prime}-\mathrm{v}_{\mathrm{n}}\right]$
$u^{\prime}=\frac{4 X}{X+15 Y+3 Z}=\frac{4 x}{-2 x+12 y+3}$
$v^{\prime}=\frac{9 Y}{X+15 Y+3 Z}=\frac{9 y}{-2 x+12 y+3}$
L^{*} is related to the lightness and is nonlinear to account for the nonlinear response of the visual system to luminance. The u's and v's distort the CIE diagram to make the MacAdam ellipses more round.
$\mathrm{Y}_{\mathrm{n}}, \mathrm{u}_{\mathrm{n}}$ and v_{n} are for white

1976 CIELUV

CIELUV Color Difference

$$
\Delta \mathrm{E}=\sqrt{(\Delta \mathrm{L} *)^{2}+(\Delta \mathrm{u} *)^{2}+(\Delta \mathrm{v} *)^{2}}
$$

Polar Coordinates

$$
\begin{aligned}
& C_{u v}^{*}=\sqrt{u^{* 2}+v^{* 2}} \\
& h_{u v}=\frac{180}{\pi} \tan ^{-1}\left(\frac{v^{*}}{u^{*}}\right)
\end{aligned}
$$

1976 CIELAB

$$
\begin{aligned}
& \text { Plastic, Textile \& Paint } \\
& \begin{array}{l}
L^{*}=116 f\left(\frac{Y}{Y_{n}}\right)-16 \\
L^{*}=500\left[f\left(\frac{X}{X_{n}}\right)-f\left(\frac{Y}{Y_{n}}\right)\right] \quad \\
\text { is nonlinear to account for the } \\
\text { nonlinear response of the visual } \\
\text { system to luminance. The a's and } \\
\text { b's distort the CIE diagram to } \\
\text { make the MacAdam ellipses more } \\
\text { round. }
\end{array} \\
& b^{*}=200\left[f\left(\frac{Y}{Y_{n}}\right)-f\left(\frac{Z}{Z_{n}}\right)\right] \quad \begin{array}{l}
X_{n}, Y_{n} \text { and } Z_{n} \text { are for white }
\end{array} \\
& \text { where } f(s)=s^{1 / 3} \quad \begin{array}{l}
\text { for } s>0.008856
\end{array} \\
& f(s)=7.787 s+16 / 116 \text { for } s \leq 0.008856
\end{aligned}
$$

1976 CIELAB

Polar Coordinates

$$
\begin{aligned}
& C_{a b}^{*}=\sqrt{a^{* 2}+b^{* 2}} \\
& h_{a b}=\frac{180}{\pi} \tan ^{-1}\left(\frac{b^{*}}{a^{*}}\right)
\end{aligned}
$$

Color Difference
$\Delta E_{a b}^{*}=\sqrt{\left(\Delta L^{*}\right)^{2}+\left(\Delta a^{*}\right)^{2}+\left(\Delta b^{*}\right)^{2}}$

Color Difference Formulas

- DE = 1 is approximate threshold for Just Noticeable Difference.
- CIELAB used primarily today instead of CIELUV
- CIELAB DE > 5 , but some variation for smaller differences.
- CIEDE2000 performs better for small color differences.

CIEDE2000

```
\DeltaE
where }\mp@subsup{S}{L}{}=1+0.015(\mp@subsup{L}{}{\prime}-50\mp@subsup{)}{}{2}/(20+(\mp@subsup{L}{}{\prime}-50\mp@subsup{)}{}{2}\mp@subsup{)}{}{0.5
    SC}=1+0.045
and}\mp@subsup{S}{HI}{=1+0.015TC
The terms }\Delta\mp@subsup{L}{}{\prime},\Delta\mp@subsup{C}{}{\prime}\mathrm{ and }\Delta\mp@subsup{H}{}{\prime}\mathrm{ are given by
    \DeltaL'= L'_
    \DeltaC}\mp@subsup{C}{}{\prime}=\mp@subsup{C}{T}{\prime}-\mp@subsup{C}{S}{\prime
    \DeltaH}=2\sqrt{}{\mp@subsup{C}{T}{\prime}\mp@subsup{C}{}{\prime}S}\operatorname{sin}(\Delta\mp@subsup{h}{}{\prime}/2
where the subscripts S and T refer to the standard and trial respectively, and where:
    \Deltah'= ht
    L'= L*
    \mp@subsup{a}{}{\prime}=(1+G)a}\mp@subsup{a}{}{*
    b}=\mp@subsup{b}{}{*
    C'}=\sqrt{}{\mp@subsup{a}{}{2}+\mp@subsup{b}{}{\prime2}
```

```
The terms \(G\) and \(T\) are calculated using:
        \(G=0.5-0.5 \sqrt{\left.C_{a i b}^{* 7}\right)\left(C_{a b}^{* 7}+25^{7}\right)}\)
and:
\(T=1-0.17 \cos \left(h^{\prime}-30\right)+0.24 \cos \left(2 h^{\prime}\right)+0.32 \cos \left(3 h^{\prime}+6\right)-0.20 \cos \left(4 h^{\prime}-63\right)\)
Finally, the rotation term \(R_{T}\) given by:
    \(R_{T}=-\sin (2 \Delta \theta) R_{C}\)
where \(R_{C}=2 \sqrt{C^{7} /\left(C^{7}+25^{7}\right)}\)
and \(\Delta \theta=30 \exp \left\{-\left(\left(h^{\prime}-275\right) / 25\right)^{2}\right\}\)
```

Westland - Computational Colour Science using Matlab

Comparison of 10 Samples

CIELAB Space

Color Difference Comparison

Human Cone Sensitivities

Only during the 1990s were researcher able to distinguish the cone sensitivities

LMS Color Space

Project P onto LMS color matching functions. The $(1, \mathrm{~m})$ is analogous to (x, y) chromaticity coordinates.

Color Blindness

- Protanopia - No L Cones
> 1% men, rare in women
- Deutranopia - No M Cones
- 1% men, 0.01% women
> Tritanopia - No 5 Cones
$>$ rare

Color Blindness

Color Blindness

Normal

Protonopia

No L Cones

Deuteranopia

No M Cones

Color Blindness Examples

Color Space Conversions

$$
\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y} \\
\mathrm{Z}
\end{array}\right]=\left[\begin{array}{lll}
0.412453 & 0.357580 & 0.180423 \\
0.212671 & 0.715160 & 0.072169 \\
0.019334 & 0.119193 & 0.950227
\end{array}\right]\left[\begin{array}{l}
\mathrm{R}_{709} \\
\mathrm{G}_{709} \\
\mathrm{~B}_{709}
\end{array}\right]
$$

This is a conversion from an RGB color model to XYZ trichromatic coordinates. The 709 refers to a standard set of phosphors used in most displays. RGB colors are assumed to range from 0..1. However, in the computer they usually range from $0 . .255$. Simply divide the computer value by 255 to normalize.

Color Space Conversions - Example

$$
\left[\begin{array}{l}
\mathrm{X} \\
\mathrm{Y} \\
\mathrm{Z}
\end{array}\right]=\left[\begin{array}{lll}
0.412453 & 0.357580 & 0.180423 \\
0.212671 & 0.715160 & 0.072169 \\
0.019334 & 0.119193 & 0.950227
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

$$
\begin{array}{ll}
X=0.412453 & x=0.412453 /(0.412453+0.212671+0.019334) \\
Y=0.212671 & x=0.64 \\
Z=0.019334 & y=0.212671 /(0.412453+0.212671+0.019334) \\
& y=0.33
\end{array}
$$

Example (1, 0, 0)

Color Space Conversions

$\left[\begin{array}{l}L \\ M \\ S\end{array}\right]=\left[\begin{array}{rrr}0.3897 & 0.6890 & -0.0787 \\ -0.2298 & 1.1834 & 0.0464 \\ 0.0000 & 0.0000 & 1.0000\end{array}\right]\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]$

L+M Channels

Opponent Processes

Opponent Colors

Camera White Balance

Photofocus.com

Von Kries Transform

Sometimes called "wrong" von Kries transform when done
on XYZ instead of
LMS.

$$
\left(\begin{array}{c}
L_{2} \\
M_{2} \\
S_{2}
\end{array}\right)=\left(\begin{array}{ccc}
L_{W 2} / L_{W 1} & 0 & 0 \\
0 & M_{W 2} / M_{W 1} & 0 \\
0 & 0 & S_{W 2} / S_{W 1}
\end{array}\right)\left(\begin{array}{c}
L_{1} \\
M_{1} \\
S_{1}
\end{array}\right)
$$

Chromatic Adaptation Transform

- Von Kries is a little too simple due to interaction between the channels.
- CATs try to match real data

$$
\left(\begin{array}{c}
X_{2} \\
Y_{2} \\
Z_{2}
\end{array}\right)=M_{C A T}^{-1}\left(\begin{array}{ccc}
X_{W 2} / X_{W 1} & 0 & 0 \\
0 & Y_{W 2} / Y_{W 1} & 0 \\
0 & 0 & Z_{W 2} / Z_{W 1}
\end{array}\right) M_{C A T}\left(\begin{array}{c}
X_{1} \\
Y_{1} \\
Z_{1}
\end{array}\right)
$$

Questions on Trichromatic Theory

- What does bluish-yellow look like?
$>$ What does greenish-red look like?
Why do colorblind people either lose red-green or yellow-blue colors in pairs?
$>$ Red, green and blue appear to be pure colors (i.e. not a mixture of other colors). Why does yellow also appear as a pure color?

Opponent Process

Opponent Process Test

How much yellow is needed to cancel blue tint?

How much blue is needed to cancel yellow tint?

How much red is needed to cancel green tint?

\square How much green is needed to cancel red tint?

Opponent Process

Opponent Process

Opponent Process

Opponent Colors

Receptive Fields

The lighter photoreceptors are the ones that activate in response to light while the others are the photoreceptors that activate in the absence of light. As you can see, some of the dark photoreceptors encircle the lighter ones and vice versa. In reality, however, these two types of photoreceptors look the same.

Receptive Fields

Hermann's Grid

$\square \square \square \square \square \square$
 $\square \square \square \square \square \square$
 $\square \square \square \square \square \square$
 ■日 - \square_{1} ■日ாח

Hermann's Grid

Mach Bands

Mach Bands

Mach Bands

Lightness Contrast

Lightness Contrast

Color Contrast

Complex Color Shifts

Rubik's Cube??

Rubic's Cube

Blue Dot

Blue Dot

Color Mach Bands

Color Contrast Example

Color Contrast

sRGB				
	Grey	Yellow	Orange	White
R	200	249	249	255
G	200	245	106	255
B	200	24	71	255
Rnorm	0.78431373	0.97647059	0.97647059	1
Gnorm	0.78431373	0.96078431	0.41568627	- 1
Bnorm	0.78431373	0.09411765	0.27843137	- 1
RL	0.57758044	0.94730654	0.94730654	1
GL	0.57758044	0.91309865	0.14412847	- 1
BL	0.57758044	0.00913406	0.06301002	- 1
X	0.5489648	0.71887323	0.45362534	0.950456
Y	0.57758044	0.85513546	0.30908692	- 1
Z	0.62884301	0.13582962	0.09536815	1.088754
x	0.31273127	0.42043346	0.52865132	0.31273127
y	0.32903287	0.5001265	0.36020741	0.32903287
X100	54.8964795	71.8873233	45.3625338	95.0456
Y100	57.758044	85.5135456	30.9086916	100
Z100	62.8843015	13.5829621	9.53681495	108.8754

$\mathrm{Rnorm}=\mathrm{R} / 255$
$\mathrm{C}_{\mathrm{L}}=\left\{\begin{array}{lll}\left(\frac{\mathrm{C}+0.055}{1.055}\right)^{2.4} & \text { for } \mathrm{C} \leq 0.04045 \\ \text { for } \mathrm{C}>0.04045\end{array}\right\} \approx \mathrm{C}^{2.2}$
where C corresponds to R, G, , or B. Finally, the Tristimulus
values are obtained with the following matrix operation.
$\left[\begin{array}{l}\mathrm{X} \\ \mathrm{Y} \\ \mathrm{Z}\end{array}\right]=\left[\begin{array}{lll}0.412453 & 0.357580 & 0.180423 \\ 0.212671 & 0.715160 & 0.072169 \\ 0.019334 & 0.119193 & 0.950227\end{array}\right]\left[\begin{array}{l}R_{L} \\ G_{L} \\ B_{L}\end{array}\right]$

Scale XYZ to make $\mathrm{Y}_{\mathrm{w}}=100$

CIECAM02 Output

- Brightness is the subjective appearance of how bright an object appears given its surroundings and how it is illuminated.
- Lightness is the subjective appearance of how light a color appears to be.
- Colorfulness is the degree of difference between a color and grey.
- Chroma is the colorfulness relative to the brightness of another color that appears white under similar viewing conditions. This allows for the fact that a surface of a given chroma displays increasing colorfulness as the level of illumination increases.
- Saturation is the colorfulness of a color relative to its own brightness.
- Hue is the degree to which a stimulus can be described as similar to or different from stimuli that are described as red, green, blue, and yellow.

Lightness Contrast

Sample Color

CIECAM02 Example

Hyperspectral Imaging

Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS)

Singular Value Decomposition (SVD)

A matrix $\mathrm{A}_{\mathrm{mxn}}$ with m rows and n columns can be decomposed into

$$
\mathrm{A}=\mathrm{USV}^{\mathrm{T}}
$$

where $\mathrm{U}^{\mathrm{T}} \mathrm{U}=\mathrm{I}, \mathrm{V}^{\mathrm{T}} \mathrm{V}=\mathrm{I}$ (i.e. orthogonal) and S is a diagonal matrix.
If $\operatorname{Rank}(A)=p$, then $U_{m x p}, V_{n x p}$ and $S_{p x p}$

OK, but what does this mean is English?

SVD by Example

Keele Data on Reflectance of Natural Objects
$\mathrm{m}=404$ rows of different objects
$\mathrm{n}=31$ columns, wavelengths $400-700 \mathrm{~nm}$ in 10 nm steps
$\operatorname{Rank}(\mathrm{A})=31$ means at least 31 independent rows

SVD by Example

$\mathrm{U}^{\mathrm{T}} \mathrm{U}=\mathrm{I}$ means dot product of two different columns of U equals
zero.
$\mathrm{V}^{\mathrm{T}} \mathrm{V}=\mathrm{I}$ means dot product of two different columns of V (rows of V^{T}) equals zero.

Basis Functions

Columns of V are basis functions that can be used to represent the original Reflectance curves.

Basis Functions

First column handles most of the variance, then the second column etc.

Singular Values

$$
\begin{aligned}
& \mathrm{S}_{31 \times 31}= \\
& =\begin{array}{|rrrrrrrrrrrrrr}
4041.4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1143.8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 752.56 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 348 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 242.15 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 142.88 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 116.85 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 85.144 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 59.404 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 43.579 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 28.987 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 23.311 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 17.551 \\
\hline
\end{array} \\
& \bigcirc \bigcirc \bigcirc \\
& \text { O } \\
& 0
\end{aligned}
$$

The square of diagonal elements of S describe the variance accounted for by each of the basis functions.

SVD Approximation

The original matrix can be approximated by taking the first d columns of U , reducing S to a d x d matrix and using the first d rows of V^{T}.

SVD Reconstruction

Three Basis Functions

Five Basis Functions

