Retinoscopy

Retinoscopy is a means for objectively assessing the refractive error in the eye. A slit of light is projected into the eye and the motion of the returned light is analyzed. Retinoscopy is typically used as a starting point for subjective refractions.

Retinoscopy - Illumination

A slit is imaged into the pupil and scanned across the pupil aperture. The light falling on the retina is an out of focus image of the slit and moves in the same direction as the scan.

Retinoscopy - Hyperopia

Far Point is Behind Patient - With Motion

Retinoscopy - Low Myopia

Far Point is Behind Observer - With Motion

Retinoscopy - High Myopia

Far Point is Between Observer and Patient - Against Motion

Retinoscopy - Myopia with Far point at the hole

Far Point is at Observer

Spherical Refractive Error

To correct for spherical refractive error, place lens in front of eye to map distant point to the far point.

Spherical Refractive Error

Moving the lens away from the eye changes the required power.

Vertex Adjustment

$$
\begin{array}{ll}
\phi_{2}=\frac{\phi_{1}}{\phi_{1} d+1} & \phi_{1}=\frac{\phi_{2}}{1-\phi_{2} d} \\
\begin{array}{l}
\text { Spectacle Lens Power } \\
\text { given contact lens } \\
\text { prescription }
\end{array} & \begin{array}{l}
\text { Contact Lens Power } \\
\text { given spectacle lens } \\
\text { prescription }
\end{array}
\end{array}
$$

The same relationships hold for hyperopic eyes

Axial Astigmatism

The position of the far point depends on the meridian. Two meridians 90° apart have far points at either end of the line. These meridians can be oriented at any angle.

Axial astigmatism requires a spherocylinder lens for correction.

Toric or Spherocylinder Lenses

Spherocylinder lenses have a given power along one meridian and another power along the meridian 90° away.

Toric or Spherocylinder Lenses

Spherocylinder lenses can be decomposed into a spherical lens and a cylindrical lens. There are two combinations of spheres and cylinders.

Toric or Spherocylinder Lenses

Spherocylinder lenses can be decomposed into a spherical lens and a cylindrical lens. One combination has a plus cylinder and one has a minus cylinder.

Toric or Spherocylinder Lenses

Power crosses are used to determine the shape of a spherocylinder and to convert between the plus cylinder form and the minus cylinder form.

Flat minus sphere with a plus cylinder
or

Steep plus sphere with a minus cylinder

Toric or Spherocylinder Lenses

Imaging with Spherocylinder Lenses

Imaging with Spherocylinder Lenses

Cylinder Forms

If the power of the cylinder is positive, the prescription is in plus cylinder form.

If the power of the cylinder is negative, the prescription is in minus cylinder form.

To convert between forms:

1. New spherical lens has power $\phi_{s}+\phi_{c}$
2. New cylindrical lens has power $-\phi_{c}$
3. New axis is rotated 90°.

Power Crosses

Power Crosses

Power Crosses

Power Crosses

You have a lens with the prescription
$-1.00-4.00 \times 95^{\circ}$
What is the power cross?

Power Crosses

Power Crosses

You have a lens with power +2.00 D along the 170° and +3.50 D along the 80° meridian. What is the lens prescription in plus cylinder form? What is the lens prescription in minus cylinder form?

Power Crosses

Spherical Equivalent Power

- Average power of a spherocylinder lens
$>\operatorname{SEP}=\phi_{S}+0.5 \times \phi_{C}$
- This is the lens that would put the circle of least confusion on the retina.

Jackson Crossed Cylinder

A crossed cylinder has a power
ϕ_{c} along one axis and a power
$-\phi_{c}$ along the other axis.
Crossed cylinders also have a
spherical equivalent power of zero.

Astigmatic Decomposition

- The result of combining spherocylinder lenses of different axes can be determined using astigmatic decomposition. An example of an application of this technique is determining the resulting prescription in a patient with cylinder error and a toric lens that is oriented improperly.

Toric

SEP

J0

J45

Astigmatic Decomposition

Astigmatic Decomposition - Example

Find the resultant lens of the combination of

$$
\begin{aligned}
& -2.75 \mathrm{D} /+1.00 \mathrm{D} \times 10 \text { and } \\
& +4.25 \mathrm{D} /-1.50 \mathrm{D} \times 20
\end{aligned}
$$

Sphere	Cylinder	Axis	J0	J45	SEP
S	C	θ_{0}	$-0.5 * \cos 2 \theta_{0}$	$-0.5 * \mathrm{C} \sin 2 \theta_{0}$	$\mathrm{~S}+\mathrm{C} / 2$
-2.75	1.00	10	$\longrightarrow-0.470$	-0.171	-2.25
4.25	-1.50	20	0.575	0.482	3.50
$\mathrm{~S}_{\mathrm{R}}$	C_{R}	θ_{R}	0.105	0.311	1.25

Astigmatic Decomposition

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{R}}=\sum \mathrm{SEP}-\sqrt{\left(\sum \mathrm{J}_{0}\right)^{2}+\left(\sum \mathrm{J}_{45}\right)^{2}} \\
& \mathrm{C}_{\mathrm{R}}=2 \sqrt{\left(\sum \mathrm{~J}_{0}\right)^{2}+\left(\sum \mathrm{J}_{45}\right)^{2}} \\
& \theta_{\mathrm{R}}=-\tan ^{-1}\left[\frac{\mathrm{C}_{\mathrm{R}} / 2+\sum \mathrm{J}_{0}}{\sum \mathrm{~J}_{45}}\right] \text { add } 180^{\circ} \text { if } \theta_{\mathrm{R}} \leq 0^{\circ}
\end{aligned}
$$

Old Equation

Change to

$$
\begin{array}{r}
\theta_{R}=\frac{1}{2} \tan ^{-1}\left(\frac{\sum J 45}{\Sigma J 0}\right)+90^{\circ} \\
\theta_{R}=-\tan ^{-1}\left(\frac{\frac{C_{R}}{2}+\Sigma J 0}{\Sigma J 45}\right)
\end{array}
$$

In the example:
$\mathrm{S}_{\mathrm{R}}=+0.922 \mathrm{D}$
$\mathrm{C}_{\mathrm{R}}=+0.656 \mathrm{D}$
$\theta_{\mathrm{R}}=125.7^{\circ}$

Phoropter

