
Modeling the Inverse Fourier Transform

𝐿𝐿𝜉𝜉 = 5 ⁄𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚



Inverse transform with No Shift

No Shift

Amplitude Phase



Inverse transform with F(ξ) shifted

Shift F

Amplitude Phase



Inverse transform with F(ξ) and f(x) shifted

Shift F & f

Amplitude Phase

Note: 𝑒𝑒𝑒𝑒𝑒𝑒 −𝑖𝑖𝜋𝜋 = −1



Inverse transform, F(ξ) and f(x) shifted, scaled

Shift F & f and 
scale

Amplitude Phase

Note: 𝑒𝑒𝑒𝑒𝑒𝑒 −𝑖𝑖𝜋𝜋 = −1

Note: 𝐿𝐿𝜉𝜉 is the width of the array in 
Fourier space.



Relating Dimensions in DFTs

𝐿𝐿𝜉𝜉 = 𝑁𝑁Δ𝜉𝜉 = 5 ⁄𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚

𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑚𝑚𝑁𝑁𝑒𝑒𝑁𝑁 𝑜𝑜𝑜𝑜 𝐸𝐸𝐸𝐸𝑒𝑒𝑚𝑚𝑒𝑒𝐸𝐸𝐸𝐸𝐸𝐸 𝑖𝑖𝐸𝐸 𝐴𝐴𝑁𝑁𝑁𝑁𝐴𝐴𝑐𝑐 = 60

Δ𝑒𝑒 =
1
𝐿𝐿𝜉𝜉

= 0.2𝑚𝑚𝑚𝑚

𝐿𝐿𝑥𝑥 = 𝑁𝑁Δ𝑒𝑒 = 12mm

Δ𝜉𝜉 =
1
𝐿𝐿𝑥𝑥

= 0.083 ⁄𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚



Scaling Comparison

𝔉𝔉

𝔉𝔉−1

Forward Transform

Inverse Transform

F=Xs*fftshift(fft(fftshift(f)));

f=L_xi*ifftshift(ifft(ifftshift(F)));

Δ𝑒𝑒 =
1
𝐿𝐿𝜉𝜉

⟹ 𝐿𝐿𝜉𝜉 =
1
𝑋𝑋𝑠𝑠



Sampling Theorem

Δ𝑒𝑒 = 𝑋𝑋𝑠𝑠 = 0.2𝑚𝑚𝑚𝑚

Δ𝑒𝑒 = the spacing between the points in the array.

𝑋𝑋𝑠𝑠 = the spacing between the samples of the 
function.

In this case, the two values are the same.



Sampling Theorem
Fourier transforming gives our approximation to the sinc function. We are sampling right at twice the Nyquist frequency 
so these patterns “repeat” outside of the array and the edges of the patterns just touch.



Sampling Theorem

𝑋𝑋𝑠𝑠 = 2Δ𝑒𝑒 = 0.4𝑚𝑚𝑚𝑚

Δ𝑒𝑒 = 0.2𝑚𝑚𝑚𝑚

Δ𝑒𝑒 = the spacing between the points in the array.

𝑋𝑋𝑠𝑠 = the spacing between the samples of the 
function.

In this example, 𝑋𝑋𝑠𝑠 is double Δ𝑒𝑒.



Sampling Theorem
Fourier transforming gives our approximation to the sinc function. We are sampling right at the Nyquist frequency so 
these patterns now “repeat” inside the array and the edges of the patterns overlap.
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