1. Suppose the electric field at the plane $z=0$ is given by

$$
U(x, y, 0)=\exp \left(i 2 \pi\left(\frac{\beta}{\lambda}\right) y\right)+\exp \left(-i 2 \pi\left(\frac{\beta}{\lambda}\right) y\right)
$$

Do the following:
a) Calculate the angular spectrum $A(\xi, \eta ; 0)$ of this field.
b) Given the approximate Fresnel transfer function

$$
H(\xi, \eta)=\exp (i k z) \exp \left[-i \pi \lambda z\left(\xi^{2}+\eta^{2}\right)\right]
$$

calculate the angular spectrum $A(\xi, \eta ; z)$ at a plane some distance z away.
c) Calculate the field on this remote plane $U(x, y, z)$.
d) Plot the irradiance pattern $|U(x, y, z)|^{2}$. What is the separation between the peaks of the pattern?
2. A Sinusoidal Zone Plate has a periodic pattern $f(x)$ shown below. The peak transmission of the pattern is 1.0. The amplitude profile of the Sinusoidal Zone Plate is given by $f\left(r^{2}\right)$.

a) Calculate the complex Fourier series coefficients a_{m} of the function $f(x)=\frac{1}{2}+\frac{1}{2} \cos \left(2 \pi \xi_{0} x\right)$, where $\xi_{o}=1 / X$.
b) What is the diffraction efficiency η_{m} for the Sinusoidal Zone Plate?
c) How many diffraction orders have non-zero diffraction efficiency? What are the values of these diffraction efficiencies?
3. A circular pupil of diameter D is placed against an ideal thin lens with focal length f. Calculate the following:
a) What is the field $U(x, y, f)$ in the rear focal plane of the lens? Note: you can ignore the size of the lens aperture here.
b) What is the irradiance $I(x, y, f)$ in the rear focal plane of the lens?
c) Plot a radial profile through the irradiance pattern.
d) For what value of the radial coordinate r does the $1^{\text {st }}$ zero occur in the irradiance pattern?
e) How does this pattern change if the diameter D is reduced?
4. Given the function $f(x)=\operatorname{sinc}(100 x)$, calculate the following:
a) Write an expression for the sampled version $f_{s}(x)$ of this function with sample spacing equal to X_{S}.
b) Calculate $F_{S}(\xi)=\mathcal{F}\left\{f_{s}(x)\right\}$. What is the Nyquist frequency N_{ξ} ?
c) What should the sample spacing X_{s} be so that aliasing does not occur?

