1. Prove the following Fourier transform relationship from our derivation of Gaussian beams

$$
\mathcal{F}_{1 D}\left\{\exp \left[-\pi \frac{x^{2}}{a+i c}\right]\right\}=(a+i c)^{1 / 2} \exp \left[-\pi(a+i c) \xi^{2}\right]
$$

where a and c are real, $a \geq 0$ and $a^{2}+c^{2}<\infty$.
2. The profile of a Gaussian beam emitted from a CO_{2} laser with a wavelength $\lambda=10.6 \mu \mathrm{~m}$ is measured at two distances and has widths $w\left(z_{1}\right)=1.699 \mathrm{~mm}$ and $w\left(z_{2}\right)=3.38 \mathrm{~mm}$. The separation between the two measurement locations is $z_{2}-z_{1}=10 \mathrm{~cm}$. Assume that the distances $z \gg z_{o}$. Determine:
(a) Using the assumption $z \gg z_{o}$, approximate the beam width
(b) the beam waist w_{o}
(c) the Rayleigh range z_{o}
(d) the measurement locations z_{1} and z_{2}.
(e) the radius of curvature of the beam at z_{2}.
(f) the angular divergence of the beam.
3. Download the file phase2.dat from the course website. You will need Matlab or something equivalent to do this problem. This is a binary file containing 512×512 consecutive double values corresponding to a 512×512 array of phase values $\Phi(\xi, \eta)$. For this problem, we'll start in Fourier space for simplicity. Do the following:
(a) Use the following Matlab code snippet below to aid in importing the data. You will need to edit the file path accordingly.
fid $=$ fopen('C: \backslash Users $\backslash j s c h w \backslash$ Dropbox \backslash Class \backslash OPTI 512 Linear Systems, Fourier Transforms \backslash Homeworks 1 phase2.dat', 'rb');
phase $=$ fread(fid, [512 512], 'double');
imshow(phase,[])
Plot the phase pattern $\Phi(\xi, \eta)$. The dimensions of the array from

$$
-0.4 \text { to }+0.4 \mathrm{cyc} / \mathrm{mm}
$$

in the horizontal and vertical directions.
(b) Create the complex array $A(\xi, \eta ; 0)=\mathcal{F}_{2 D}\{U(x, y, 0)\}=\exp [i \Phi(\xi, \eta)]$. Now using the Fresnel Transfer function, propagate this pattern a distance $z=100 \mathrm{~m}$, assuming a wavelength of $\lambda=633 \mathrm{~nm}$. This gives $A(\xi, \eta ; z)$. Next, inverse transform to get $U(x, y, z)=\mathcal{F}_{2 D}^{-1}\{A(\xi, \eta ; z)\}$. Plot $|U(x, y, z)|^{2}$. You may need to adjust the orientation and contrast of this image to see the resultant irradiance pattern.

