- 1. Given the function $f(x) = sinc^2(100x)$, calculate the following:
 - a) Write an expression for the sampled version $f_s(x)$ of this function with sample spacing equal to X_s .
 - b) Calculate $F_s(\xi) = \mathcal{F}{f_s(x)}$. What is the Nyquist frequency N_{ξ} ?
 - c) Plot $F_s(\xi)$ in the range $-300 \le \xi \le 300$ for the cases where the sampling frequency $1/X_s = 2N_{\xi}, 1/X_s = 1.5N_{\xi}, \text{ and } 1/X_s = N_{\xi}.$
 - d) The function $G(\xi)$ is used to recover the central spectrum of $F_s(\xi)$, where

$$G(\xi) = F_s(\xi)rect\left(\frac{\xi}{200}\right).$$

Write equivalent expressions for $G(\xi)$ for the three sampling cases $1/X_s = 2N_{\xi}$, $1/X_s = 1.5N_{\xi}$, and $1/X_s = N_{\xi}$. Note, this just means write a function that has the same shape as $G(\xi)$ which will be *rect()* and *tri()* functions.

- e) Calculate and plot g(x) = F⁻¹{G(ξ)} for the three sampling cases. How do these compare to the original function f(x)?
- 2. An interferometer is used to test the shape of an optical surface. The interference pattern in the camera sensor of the system is given by

$$I(x,y) = \frac{1}{2} + \frac{1}{2}\cos(2\pi r^4)$$

where $r^2 = x^2 + y^2$, and $0 \le r \le 3mm$. Do the following:

a) The interference pattern has a bright fringe whenever $2\pi r^4 = 2m\pi$, *m* integer. Two adjacent fringes occur when $2\pi r_1^4 = 2m_o\pi$ and $2\pi r_2^4 = 2(m_o - 1)\pi$. Calculate the value of m_o when $r_1 = 3mm$.

- b) Calculate the value of r_2 based on the results from part (a). What is the distance between these two fringes $r_1 - r_2$? In this case, this will be the smallest period of the fringe pattern.
- c) What is the Nyquist frequency N_{ξ} in *cyc/mm* associated with the interference pattern?
- d) What sample spacing X_s is needed to avoid aliasing?
- e) Given this sample spacing, how many pixels *N* are required to cover the full width of the interference pattern?
- f) Are the values of N and X_s achievable with current camera sensor technologies?
- 3. Suppose the electric field at the plane z = 0 is given by

$$U(x, y, 0) = exp\left(i2\pi\left(\frac{\beta}{\lambda}\right)y\right) + exp\left(-i2\pi\left(\frac{\beta}{\lambda}\right)y\right).$$

Do the following:

- a) Calculate the angular spectrum $A(\xi, \eta; 0)$ of this field.
- b) Given the transfer function $H(\xi,\eta) = exp(i2\pi\sqrt{1/\lambda^2 \xi^2 \eta^2} \cdot z)$, calculate the angular spectrum $A(\xi,\eta;z)$ at a plane some distance z away.
- c) Calculate the field on this remote plane U(x, y, z).
- d) Plot the irradiance pattern $|U(x, y, z)|^2$. What is the separation between the peaks of the pattern?