1. Given the function $f(x)=\operatorname{sinc}^{2}(100 x)$, calculate the following:
a) Write an expression for the sampled version $f_{s}(x)$ of this function with sample spacing equal to X_{S}.
b) Calculate $F_{s}(\xi)=\mathcal{F}\left\{f_{s}(x)\right\}$. What is the Nyquist frequency N_{ξ} ?
c) Plot $F_{s}(\xi)$ in the range $-300 \leq \xi \leq 300$ for the cases where the sampling frequency $1 / X_{s}=2 N_{\xi}, 1 / X_{s}=1.5 N_{\xi}$, and $1 / X_{s}=N_{\xi}$.
d) The function $G(\xi)$ is used to recover the central spectrum of $F_{s}(\xi)$, where

$$
G(\xi)=F_{s}(\xi) \operatorname{rect}\left(\frac{\xi}{200}\right) .
$$

Write equivalent expressions for $G(\xi)$ for the three sampling cases $1 / X_{s}=2 N_{\xi}$, $1 / X_{s}=1.5 N_{\xi}$, and $1 / X_{s}=N_{\xi}$. Note, this just means write a function that has the same shape as $G(\xi)$ which will be $\operatorname{rect}()$ and $\operatorname{tri}()$ functions.
e) Calculate and plot $g(x)=\mathcal{F}^{-1}\{G(\xi)\}$ for the three sampling cases. How do these compare to the original function $f(x)$?
2. An interferometer is used to test the shape of an optical surface. The interference pattern in the camera sensor of the system is given by

$$
I(x, y)=\frac{1}{2}+\frac{1}{2} \cos \left(2 \pi r^{4}\right)
$$

where $r^{2}=x^{2}+y^{2}$, and $0 \leq r \leq 3 \mathrm{~mm}$. Do the following:
a) The interference pattern has a bright fringe whenever $2 \pi r^{4}=2 m \pi, m$ integer. Two adjacent fringes occur when $2 \pi r_{1}^{4}=2 m_{o} \pi$ and $2 \pi r_{2}^{4}=2\left(m_{o}-1\right) \pi$. Calculate the value of m_{o} when $r_{1}=3 \mathrm{~mm}$.
b) Calculate the value of r_{2} based on the results from part (a). What is the distance between these two fringes $r_{1}-r_{2}$? In this case, this will be the smallest period of the fringe pattern.
c) What is the Nyquist frequency N_{ξ} in $c y c / \mathrm{mm}$ associated with the interference pattern?
d) What sample spacing X_{s} is needed to avoid aliasing?
e) Given this sample spacing, how many pixels N are required to cover the full width of the interference pattern?
f) Are the values of N and X_{s} achievable with current camera sensor technologies?
3. Suppose the electric field at the plane $z=0$ is given by

$$
U(x, y, 0)=\exp \left(i 2 \pi\left(\frac{\beta}{\lambda}\right) y\right)+\exp \left(-i 2 \pi\left(\frac{\beta}{\lambda}\right) y\right)
$$

Do the following:
a) Calculate the angular spectrum $A(\xi, \eta ; 0)$ of this field.
b) Given the transfer function $H(\xi, \eta)=\exp \left(i 2 \pi \sqrt{1 / \lambda^{2}-\xi^{2}-\eta^{2}} \cdot z\right)$, calculate the angular spectrum $A(\xi, \eta ; z)$ at a plane some distance z away.
c) Calculate the field on this remote plane $U(x, y, z)$.
d) Plot the irradiance pattern $|U(x, y, z)|^{2}$. What is the separation between the peaks of the pattern?

