$$f(x) = \frac{1}{4}rect(x) + \frac{3}{4}rect(2x).$$

Plot this function.

- 2. First, let's figure out the complex Fourier series for this function assuming a period $X_1 = 3/2$.
 - (a) What is the frequency ξ_o associated with this period?
 - (b) Determine an expression for the expansion coefficients a_m for the complex Fourier series in terms of a pair of *sinc()* functions.
 - (c) Armed with the expansion coefficients, a function $g_1(x)$ describing the complex Fourier series of f(x) can be obtained with

$$g_1(x) = \sum_{m=-\infty}^{\infty} a_m exp[i2\pi m\xi_o x].$$

The function $g_1(x)$ perfectly matches the function f(x) over the region

 $-3/4 \le x \le 3/4$ (i.e. over the period X_1). The side effect of representing f(x) in terms of its Fourier series is that outside of this range, the function is repeated at intervals of X_1 . The sum is therefore a periodic function and can be expressed as

$$g_1(x) = \sum_{m=-\infty}^{\infty} f(x - mX_1).$$

Plot $g_1(x)$ using this last expression over the range $-5 \le x \le 5$.

(d) In class, we showed that the Fourier transform of a periodic function is just a series of delta functions weighted by the Fourier expansion coefficients. In this case, the Fourier transform G₁(ξ) is equal to

$$G_1(\xi) = \sum_{m=-\infty}^{\infty} a_m \delta(\xi - m\xi_o).$$

Plot $X_1G_1(\xi)$ over the range $-6 \le \xi \le 6$.

- 3. Repeat question 2 now assuming a period $X_2 = 3$.
 - (a) What is the frequency ξ_o associated with this period?
 - (b) Determine an expression for the expansion coefficients a_m for the complex Fourier series in terms of a pair of *sinc()* functions.
 - (c) Armed with the expansion coefficients, a function $g_2(x)$ describing the complex Fourier series of f(x) can be obtained with

$$g_2(x) = \sum_{m=-\infty}^{\infty} a_m exp[i2\pi m\xi_o x].$$

The function $g_2(x)$ perfectly matches the function f(x) over the region $-3/2 \le x \le 3/2$ (i.e. over the period X_2). The side effect of representing f(x) in terms of its Fourier series is that outside of this range, the function is repeated at intervals of X_2 . The sum is therefore a periodic function and can be expressed as

$$g_2(x) = \sum_{m=-\infty}^{\infty} f(x - mX_2).$$

Plot g₂(x) using this last expression over the range −5 ≤ x ≤ 5.
(d) In this case, the Fourier transform G₂(ξ) is now equal to

$$G_2(\xi) = \sum_{m=-\infty}^{\infty} a_m \delta(\xi - m\xi_o).$$

Plot $X_2G_2(\xi)$ over the range $-6 \le \xi \le 6$.

- 4. Now let's look at the Fourier transform of f(x).
 - (a) Use the Fourier integral to calculate $F(\xi)$ in terms of a pair of *sinc()* functions.
 - (b) Plot $F(\xi)$ over the range $-6 \le \xi \le 6$.
 - (c) Based on the results of problems 2(c) and 3(c), what happens to the plot of the complex Fourier series g(x) as the period X becomes large?
 - (d) Based on the results of problems 2(d), 3(d) and 4(b), describe what happens to the plot *XG*(ξ) as the period *X* becomes large?