1. This homework is going to analyze the properties of the complex Fourier series and the Fourier transform. For the questions below, the following function will be used

$$
f(x)=\frac{1}{4} \operatorname{rect}(x)+\frac{3}{4} \operatorname{rect}(2 x) .
$$

Plot this function.
2. First, let's figure out the complex Fourier series for this function assuming a period $X_{1}=$ 3/2.
(a) What is the frequency $\xi_{o}$ associated with this period?
(b) Determine an expression for the expansion coefficients $a_{m}$ for the complex Fourier series in terms of a pair of $\operatorname{sinc}()$ functions.
(c) Armed with the expansion coefficients, a function $g_{1}(x)$ describing the complex Fourier series of $f(x)$ can be obtained with

$$
g_{1}(x)=\sum_{m=-\infty}^{\infty} a_{m} \exp \left[i 2 \pi m \xi_{o} x\right]
$$

The function $g_{1}(x)$ perfectly matches the function $f(x)$ over the region $-3 / 4 \leq x \leq 3 / 4$ (i.e. over the period $X_{1}$ ). The side effect of representing $f(x)$ in terms of its Fourier series is that outside of this range, the function is repeated at intervals of $X_{1}$. The sum is therefore a periodic function and can be expressed as

$$
g_{1}(x)=\sum_{m=-\infty}^{\infty} f\left(x-m X_{1}\right)
$$

Plot $g_{1}(x)$ using this last expression over the range $-5 \leq x \leq 5$.
(d) In class, we showed that the Fourier transform of a periodic function is just a series of delta functions weighted by the Fourier expansion coefficients. In this case, the Fourier transform $G_{1}(\xi)$ is equal to

$$
G_{1}(\xi)=\sum_{m=-\infty}^{\infty} a_{m} \delta\left(\xi-m \xi_{o}\right)
$$

Plot $X_{1} G_{1}(\xi)$ over the range $-6 \leq \xi \leq 6$.
3. Repeat question 2 now assuming a period $X_{2}=3$.
(a) What is the frequency $\xi_{o}$ associated with this period?
(b) Determine an expression for the expansion coefficients $a_{m}$ for the complex Fourier series in terms of a pair of $\operatorname{sinc}()$ functions.
(c) Armed with the expansion coefficients, a function $g_{2}(x)$ describing the complex Fourier series of $f(x)$ can be obtained with

$$
g_{2}(x)=\sum_{m=-\infty}^{\infty} a_{m} \exp \left[i 2 \pi m \xi_{o} x\right] .
$$

The function $g_{2}(x)$ perfectly matches the function $f(x)$ over the region $-3 / 2 \leq$ $x \leq 3 / 2$ (i.e. over the period $X_{2}$ ). The side effect of representing $f(x)$ in terms of its Fourier series is that outside of this range, the function is repeated at intervals of $X_{2}$. The sum is therefore a periodic function and can be expressed as

$$
g_{2}(x)=\sum_{m=-\infty}^{\infty} f\left(x-m X_{2}\right)
$$

Plot $g_{2}(x)$ using this last expression over the range $-5 \leq x \leq 5$.
(d) In this case, the Fourier transform $G_{2}(\xi)$ is now equal to

$$
G_{2}(\xi)=\sum_{m=-\infty}^{\infty} a_{m} \delta\left(\xi-m \xi_{o}\right)
$$

Plot $X_{2} G_{2}(\xi)$ over the range $-6 \leq \xi \leq 6$.
4. Now let's look at the Fourier transform of $f(x)$.
(a) Use the Fourier integral to calculate $F(\xi)$ in terms of a pair of $\operatorname{sinc}()$ functions.
(b) Plot $F(\xi)$ over the range $-6 \leq \xi \leq 6$.
(c) Based on the results of problems 2(c) and 3(c), what happens to the plot of the complex Fourier series $g(x)$ as the period $X$ becomes large?
(d) Based on the results of problems 2(d), 3(d) and 4(b), describe what happens to the plot $X G(\xi)$ as the period $X$ becomes large?

