OPTI 512 Homework 1

1. Show that $\cos 3 x=\cos ^{3} x-3 \cos x \sin ^{2} x$. There are two ways to go here, the hard way is to represent $\cos 3 x=\cos (2 x+x)$ and then use you angle-sum trig identities to expand out, and then repeat that process for the $\cos 2 x$ and $\sin 2 x$ terms that appear. Ugh. The easy way is to represent $\cos 3 x$ as a complex exponential and use the fact that $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$. Do this the easy way.
2. Given a function defined as

$$
f(x)=\left\{\begin{aligned}
\left(\frac{x}{2}+1\right) \cos \left(\frac{\pi x}{2}\right), & -2 \leq x<1 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

(a) $\operatorname{Plot} f(x)$.
(b) Plot $f(x-3)$.
(c) $\operatorname{Plot} f(-x)$.
(d) $\operatorname{Plot} f(3-x)$.
3. Any function $f(x)$ can be split into a combination of an even function $f_{e}(x)$ and an odd function $f_{o}(x)$ such that $f(x)=f_{e}(x)+f_{o}(x)$. For the function definition in the previous problem, plot $f_{e}(x)$ and $f_{o}(x)$.
4. The images below show 2 D sinusoidal patterns. What are the spatial frequencies ξ_{o} of these patterns in the horizontal direction if each image has a width of 50 mm ? Which pattern has the higher spatial frequency. Be sure to include the units.

